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Introduction




Cryptographie a clef publique

Security based on a hard mathematical problem.

Exemples : Factorisation (RSA) ou Logarithme discret (courbes elliptiques).
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Cryptographie post-quantique

-=~" Problem: Shor’s algorithms \\)
*~.__ Quantum polynomial time. .-

Lo " Need for a post-quantum cryptography :  ~~~.

1 classical computations; p
TeelL safe under quantum attacks. et
_.=~"" Euclidean lattices, Error correcting codes, * .
{ Polynomial systems, Hash functions )
TNl Algebraic variety (elliptic curves). PP
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Calls for standardisation

NIST in 2016.

End (almost) of the process.

Encryption schemes: Signatures :

Lattices : KYBER. Lattices : DILITHIUM, FALCON.

Hash functions : SPHINCS+.

Un round de plus :
Codes : BIKE, CLASSIC MCELIECE, HQC
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Outline of the presentation

1. Quantum computing and Shor's algorithm.

2. lLattice-based cryptography.
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Quantum Computing




Quantum bits

o Onebit:0or1
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Quantum bits

o Onebit:0or1

One quantum bit or qubit: «|0) + 8 |1) with «, 8 € C such that
laf? + (8> =1

o Two bits : 00, 01, 10, 11

Two qubits : a|00) + 3]01) 4+~ |10) + & |11) with «, 8,7,0 € C such that
o + 18 + [y[* + 0] =1

o ’nbltS’Ll’Lg’Ln

n qubits : 327 1, |i) with o, € C such that 27 01 a2 = 1
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Operations

Evolution of a quantum system : described by a unitary operator U € Usx (C).

Typical examples for a single qubit include :
1 (1 1
=G5l )
1 0
T:% wﬂhﬂj

H(a|0) + 8]1)) = a( L5 [0) + L5 1)) + 8(Z510) — %]1))

Superposition allows quick multi-evaluation
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Measurements

Quantum measurements : set {M,, } of measurement operators. m are the
possible outcomes

o ) — P(m) = || M, [9) ||

My, 1)
([ Mo [ ]

In general : operators correspond to canonical basis

o |¢) —
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o If 0 measured then |[¢) = |0)
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o If 0 measured then |[¢) = |0)

For [¢) = 3(]00) +101)) + —5 [11)
o Measure the second register: P(1) =
o If 1 measured then |¢) = f 01) + 22 |11)

~
NH
_|_
N|—=
[
N[
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Fast computation

Quantum superposition : allows fast computation by multi-evaluation.
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Fast computation

Quantum superposition : allows fast computation by multi-evaluation.

0 01 0
g=|2 Y 0 g [Y) = —(|00)+|01>)thena lying U gives
=11 0 0 o 7 pplying U g
0100
= (10) + 1))

7%
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Fast computation
Consider f:{0,1}™ — {0,1}™.

Assume there is a unitary transform

Us :|2) ly) — |2) ly @ f(2)) -
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Fast computation

Consider f:{0,1}™ — {0,1}™.
Assume there is a unitary transform
Ug : |z} ly) — =) [y & () -
Up- > agla)|0) =) ay|2)|f(2)

~—
all values f(x) are present

1/45



Fast computation

Consider f:{0,1}™ — {0,1}™.
Assume there is a unitary transform

Us :|2) ly) — |2) ly @ f(2)) -

Up- Y azl2)|0) =) aqlz) |f(x)
x x

all values f(x) are present

Problem : Find the desired information through measurement.
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Grover’s algorithm

Our goal is to find one element within a set of size N(= 2").

Assume as well that we have access to an oracle O, efficiently computable.

We will use two operators :

1. Uo: |z) |y) — |x) |y ® O(x)) . (Call to oracle)

2. 8:) oz |ry =) (20— ag)|x).  (Symmetry around mean of amplitudes)
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Grover’s algorithm
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Grover’s algorithm

When [y) = (0) - [1))/v/2
Uo Y aela) ly) = 3 (-1)°@ay |2) Iy)
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Grover’s algorithm

S operates a symmetry around the average amplitude !
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Grover’s algorithm

What happens when we apply Un and S one after another ?
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Grover’s algorithm

What happens when we apply Un and S one after another ?

Amplification of amplitude !

Need around v/N iterations to retrieve the solution with a high enough
probability.
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Shor's algorithm

There are two core ingredidents of Shor’s algorithms :

1. the fast computation of a Quantum Fourier Transform (QFT) ;

2. the computation of the hidden period of a given function f.
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Shor's algorithm
Computation of the QFT

First let us denote by {ny a Nth root of unity, i.e. {(x = exp 2im/N.

In the classical setting, we have the Discrete Fourier Transform :

DFT : (.’EQ,...,IN,:L) — (yO;“-nyfl)
with

1 N-1
= — 2 ColE.
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Shor's algorithm
Computation of the QFT

First let us denote by {y a Nth root of unity, i.e. {y = exp 2i7/N.

In the classical setting, we have the Discrete Fourier Transform :

DFT : (.’EQ,...,IN,:L) — (yO;“-nyfl)
with

1 N-1
= — 2 ColE.

In the quantum setting, we have the Quantum Fourier Transform :

N—-1 N—-1
QFT : Y wili)— Y uili)
1=0 1=0
with
1 N-1
ik
Y= = Z i (N -
VN 5
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Shor's algorithm
Computation of the QFT

We can factorise the QFT :

n

N-1
. 1 g
QT 3wl = 5 @ 10y + & 1)) -

=1

If we adopt the notation [zy,---xx] = Zle x; - 2% we also have:
N-1 1 n
FT 23" ali) = —= @) (10) + e@mlenreand 1))

Q z::o i ) Ve 10) 1)
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Shor's algorithm
Computation of the QFT
We can factorise the QFT :

n

N-1
: 1 e
QFT: 3 wili) > Z= @ (100 + &+ ).

=0 =1

If we adopt the notation [zy,---xx] = Zle x; - 2% we also have:

1 n

Vs

N-1
QFT : Y ;i) =
=0

This can be computed by successive application of rotation gates :

Ry, = {(1) eXp(Q?ﬂ'/Qk’)}
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Shor's algorithm
Computation of the QFT
We can factorise the QFT :

n

N-1
N e
QFT: 3 wili) > Z= @ (100 + &+ ).

=0 =1

If we adopt the notation [zy,---xx] = Zle x; - 2% we also have:

N—-1 n
1 .
QFT 3" wili) s —= @) (10) + emlensernl 1))
i—o VN p

e

This can be computed by successive application of rotation gates :

Ry, = {(1) eXp(Q?ﬂ'/Qk)}

We obtain a circuit with O(n?) gates, where N = 2" i.e. O(log V) gates.
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Shor's algorithm
Computing a hidden period

We are given a r-periodic function f efficiently computable through Uy and
we wish to recover r.

. Prepare the state [¢) = \ﬁ >, ) ]0).
2. Apply fas Upl¥) = - 32, o) |f(2)).

3. Measure wrt to the 2nd register :

FZN” "zo + k - ) for a given .

4. Apply the QFT : == 5777 “oaj iy

5. Measure to obtain jN/r = j/r; if ged(j,r) = 1 then r can be
recovered efficiently.
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Shor's algorithm

Conclusion

This fast period-finding strategy can be applied to:

o factorise integers;
o solve the DLP;

o solve the phase estimation problem.
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Shor's algorithm

Conclusion

This fast period-finding strategy can be applied to:

o factorise integers;
o solve the DLP;
o solve the phase estimation problem.

There is more ! Generalisation of this approach can be used to solve classical
number theoretical problems, such as:

o the computation of (S-)units of a number field;
o determination of the class group;

o finding the generator of a principal ideal I = (g).
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Conclusion

o Superposition : fast multi-evaluation

o Quantum Fourier Transform : detect period
o Almost all of exponential speed-ups

o Problem : Find desired result without structure
o Search algorithm : only quadratic speed-up
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Fuclidean lattices




Euclidean lattices

General context

Definition J

We call lattice any discrete subgroup £ of R™ where n is a positive integer.

J o Any set B of free vectors which
. . generates L is called a basis.

. o There are infinitely many bases.

. o Some are better than others:
orthogonality, short vectors
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Problems on lattices
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Problems on lattices

Shortest Vector Problem (SVP) : Find a shortest vector of £\ {0}.

Note A1 (L) its norm.
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Problems on lattices

Approximate Shortest Vector Problem (Approx-SVP) : Find a vector of £ with

norm less than v x Ay (L£).

21/45



Problems on lattices

Closest Vector Problem (CVP): Given t a target vector, find a vector of £
closestto t
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Problems on lattices

Approximate Closest Vector Problem (Approx-CVP): Given t a target vector,
find a vector of £ within distance v x d(t, £) of t
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Problems on lattices

Approximate Closest Vector Problem (Approx-CVP): Given t a target vector,
find a vector of £ within distance v x d(t, £) of t

~y 1 vn poly(n) exp(n)

~

Complexités exp(n) exp(n) poly(n)

21/45



Problems on lattices

Approximate Closest Vector Problem (Approx-CVP): Given t a target vector,

find a vector of £ within distance v x d(t, £) of t

21/45



Problems on lattices

Approximate Closest Vector Problem (Approx-CVP): Given t a target vector,

find a vector of £ within distance v x d(t, £) of t

Equivalently, find small ' = t mod £ — reduction modulo £

Guaranteed Distance Decoding (GDD) : Given any vector t in span(£), find

t' =t mod £ such that ||t’|| < yA:(£).(knowing that it exists)
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Reducing modulo a lattice

Fix B = (by,...,b,)abasisof Landt e R-b; & ---®R - b,.
Write t = Y"1 | t; - b;, with ¢; € R.

Two main algorithms used in practice :

Babai's round-off .
Output Yo7, (t: — [ti]) - by
Ensure that the outputisin [-1/2,1/2[" xB.

Babal’'s nearest plane
Use the GSO B instead:;

Ensure that the output is in [-1/2,1/2[" xB.
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GGH-like schemes




Lattice-based cryptography : GGH-like schemes

Encryption

PUBLIC KEY : @ “bad” basis H, typically the HNF.
SECRET KEY : a “good” basis, which is a trapdoor for the problem.

ENCRYPTION : ¢ = Encrypt(m,H) = s- H+ m where s € Z" and m is
short.

DECRYPTION : Decrypt(c, B) = Reduce(c, B) > GDD solver

Assume that:

o ||ml| < M; — bound on the message space

o ||Reduce(t, £)|| < R. — bound on the reduction capacity

If R+ M < A(£) then Reduce(c, £) = m.
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Lattice-based cryptography : GGH-like schemes

Digital signature

PUBLIC KEY : @ “bad” basis H, typically the HNF.

SECRET KEY : @ “good” basis B, which is the trapdoor of the problem.

SIGNATURE : s = Sign(m, B) = Reduce(m, B).

VERIFICATION : s isshortands —m € L.

Problem: Babai's algorithms leak the secret basis !
o GGH and original NTRUsign use Babai's round-off;
o Works also on more complex structures (zonotopes);
o Works with more general distribution.
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Nguyen-Regev statistical attack

o Es-s'|=B-B

. . ' o We can do as follows :

1. compute an
' . amproximation of
. B- BT,
. 2. find an approximate
. secret vector with a
gradient descent; draw

° « random vector and minimise the 4th

\ J moment
3. recover the secret
vector with one of
Babal’s algos.

Counter-measure : Draw from distribution independent of the secret basis : discrete
gaussian as in [GPV08]

Cons : not that efficient and requires floats.
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Nguyen-Regev statistical attack

o ]E[s-sT]:B-BT;

o We can do as follows :

1. compute an
amproximation of
B B';

2. find an approximate
secret vector with a
gradient descent; draw
random vector and minimise the 4th
moment

3. recover the secret
vector with one of
Babal’s algos.

Counter-measure : Draw from distribution independent of the secret basis : discrete

gaussian as in [GPV08]

Cons : not that efficient and requires floats.
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Recent lattice-based
cryptography




Lattice-based cryptography’

Running time exp(n) exp(n) poly(n)
~ 1 NZD poly(n) exp(n)
Hardness NP-hard NPNcoNP CRYPTO P

Use intermediate problems

Short Integer Solution (SIS) |

Learning With Errors (LWE)

_________________________

TFreely taken from A. Roux-Langlois
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Lattice-based cryptography

SIS and LWE : Two good average case problems

| Learning With Error (LWE)
1 Fix g,n,m € N.

Input: (A, b= As+e),
where A & M. (Z/qZ),
s & (2/qz)" e ¥ 2™

27145



Lattice-based cryptography

SIS and LWE : Two good average case problems

. Short Integer Solution (SIS)
1 Fix g,n € N.

Input: A £ M, (Z/qZ)

Goal: Find short s € Z" | As = 0 mod ¢

| Learning With Error (LWE)
1 Fix g,n,m € N.

Input: (A, b= As+e),
where A & Mmn(Z/q7),
s & (Z/qL)" e % 2™

27145



A closer look at LWE

Problem: Solve a system of m approximate equations in n variables modulo

an integer q.

$1 4 289 +4s3 ~2mod 5
351 + 455 + 253 ~ 1 mod 5
So + 253 &~ 4 mod 5

251 +3s3 ~ 2mod 5

451 + 289 + 253 ~ 3 mod 5
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A closer look at LWE

More formally, we fixn > 1, ¢ > 2 and « €]0, 1].
Given's = [s1,...,8,] € (Z/qZ)", we define a LWE sample to be:
(a (afs)+e),

where a < U ((Z/qZ)™) and e < Dy o4

We will write D,, 4 +(s) the given distribution.
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A closer look at LWE

More formally, we fixn > 1, ¢ > 2 and « €]0, 1].
Given's = [s1,...,8,] € (Z/qZ)", we define a LWE sample to be:
(a (afs)+e),

where a < U ((Z/qZ)™) and e < Dy o4

We will write D,, 4 +(s) the given distribution.

The LWE,, , problem then is :

Given m samples of D,, 4 +(s), retrieve s.

29 /45



A closer look at LWE

Given find
m| | A A +
R

0 A U (Mpn(Z/qZ)) '
. o One can vary the distributions.
os<+U((Z/qz)") :

o Still active area of research.

______________________________

o e < D;};m»(“] short
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Lattice-based cryptography
Structured variants of LWE

’: AppI’OXSVP \»—y’ LWE - SIS _ — ); CryptOgrame y
. Vo= AN constructlons ,

-
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Lattice-based cryptography

Structured variants of LWE

’: Approx-SVP \\—y’ LWE - SIS _ — ); Cryptographm y
. Seooll - . constructlons ,

-

Ring-LWE
Problem of efficiency ——— Structured variants
Module-LWE

Ring-LWE

Fix ¢ € N, K a number field, R; = Ok /(q)

A Ring-LWE sample is (a,b = as + €), Think K = Q[X]/(X™ +1)
where a & Ry, s & Rye & R and Ox = Z[X]/(X" +1)

for n = 2~

Goal: Find s
31/45



Lattice-based cryptography

Ring-LWE
Idea : Replace Z" by a polynomial ring !
Fix ¢ € N, K a number field, R; = Ok /(q).
Think K = Q[X]/(X"+1) and Ok = Z[X]/(X™ + 1) for n = 2*.

a € K can be represented by the matrix of its action by left
multiplication :
[a] : s+ a-s.



Lattice-based cryptography

Ring-LWE
Idea : Replace Z" by a polynomial ring !
Fix ¢ € N, K a number field, R, = Ok /(q).
Think K = Q[X]/(X"+1) and Ok = Z[X]/(X™ + 1) for n = 2*.

a € K can be represented by the matrix of its action by left
multiplication :
[a] :s—a-s.

LWE Ring-LWE
ai
as

A

am
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Lattice-based cryptography

Module-LWE
Idea : Replace Z by a polynomial ring !
Fix ¢ € N, K a number field, R; = Ok /(q).
Think K = Q[X]/(X"+1) and Ok = Z[X]/(X™ + 1) for n = 2*.

a € K can be represented by the matrix of its action by left
multiplication :
[a] : s+ a-s.



Lattice-based cryptography

Module-LWE

Idea : Replace Z by a polynomial ring !

Fix ¢ € N, K a number field, R, = Ok /(q).

Think K = Q[X]/(X"+1) and Ok = Z[X]/(X™ + 1) for n = 2*.

a € K can be represented by the matrix of its action by left

multiplication :
[a] :s—a-s.

LWE Module-LWE
Qi1 ai,q
a2.1 a2 d
A

(1

m,d
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Lattice-based cryptography

Structured variants of LWE

~

w-C. to a-c. *" Approx-SVP over s

¢ ng-LWE \,‘< . ideal lattices !

Tt . (Ideal-svP) .7

-~ -

___________ w-c. to a-c ,+” Approx-SVP over s

<__Module-LWE /' module lattices
""""" ‘.. (Module-svp) .-
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Lattice-based cryptography

Structured variants of LWE

""""" w.-C. to a-c. " Approx-SVP over s
/

- Rlng -LWE \,‘< . ideal lattices !

P b (ldeal‘SVP) /,'

-
~
~ o _-"

w.-C. to a.-c. _ e

___________ K\/”Approx—SVP over s
: Module-LWE > ' module lattices )
.. (Module-svp) .-
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Some definitions
Number field K = Q[X]/(P(X))

g € K <= pol. with rational coeffs

geEK < (go,-.-,9n-1) €Q"

6 root of P(X) <+ o complex embedding

Minkowski (or canonical) embedding :
ok 19 € K= (0(9))s = (9(6))o

Q(¢s) = Q[X]/(X* +1)
g=1/2+ X +3X%>-2X% g, €Q

(1/27 17 37 _2) € Q4

g g(ls) =1/2+ (s + 3¢ — 2¢3

g+ 9(G8) =1/2+ G + 3¢5 — 28

35/45



Some definitions

Ring of integers Ok ~ Z[X]/(P(X)) Z(Cs) =2 Z[X]/ (Xt 4+ 1)
(Not true in general)
g € Oxg <= pol. with integral coeffs g=1+X+3X?>-2X3 ¢, €Z

g€ 0Kk <= (g0,..,gn—1) EZ" (1,1,3,-2) ¢ z*

35/45



Some definitions

Ring of integers Ok ~ Z[X]/(P(X))
(Not true in general)
g € Oxg <= pol. with integral coeffs

g€ 0k < (go,...,gn—1) €Z"

Z(Gs) = Z[X) /(X" + 1)
g=14+X4+3X2-2X%¢g, €2

(1,1,3,-2) ¢ z*

ldeal I = (g,h) = gOk + hOxk
Principal ideal I = (g) = gOx

Ideal lattice : generated by
coeffs of gX* hX7 i, € [1,n]
or

(UK(gXi))i , (O’K(hXj))j

1 1 3 —2l«gyg

2 1 1 3 |+gX
-3 2 1 1 [+gX?
-1 -3 2 1 |«+g¢gXx?
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Some definitions

Ring of integers Ok ~ Z[X]/(P(X))
(Not true in general)
g € Oxg <= pol. with integral coeffs

g€ Or <= (go,-.-,gn-1) EZ"

Z(Gs) = Z[X) /(X" + 1)
g=14+X4+3X2-2X%¢g, €2

(1,1,3,-2) ¢ z*

ldeal I = (g,h) = gOk + hOxk
Principal ideal I = (g) = gOx

Ideal lattice : generated by
coeffs of gX* hX7 i, € [1,n]
or

(UK(gXi))i , (O’K(hXj))j

1 1 3 —2)«gyg

2 1 1 3 |+gX
-3 2 1 1 [+gX?
-1 -3 2 1 |«+g¢gXx?

Polynomial structure —> efficient for storage and computations
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Overview of the situation

__________________________
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Overview of the situation

_________________________
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Overview of the situation

__________________________

___________________________________________
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Overview of the situation

__________________________

____________________________

___________________________________________

' How hard are Ideal-SVP and Module-SVP ?'!
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Approx-SVP over ideal lattices




SVP over principal ideals

Consider an intermediate problem.

Short Generator Principal Ideal Problem (SG-PIP):
Given a principal ideal I = (g) such that g is short, retrieve g.

Logg :x— (In|oi(z)],...,Inlon(x)])

37145



SVP over principal ideals

Consider an intermediate problem.

Short Generator Principal Ideal Problem (SG-PIP):
Given a principal ideal I = (g) such that g is short, retrieve g.

1. Find a generator h = gu of I (u € OF)
Can be done in polynomial time with a quantum computer

2. Find g given h.

Use the Log-embedding? and the Log-unit lattice Log(O%)

Logg :x— (In|oi(z)],...,Inlon(x)])
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Artistic (?) view of the algorithm3
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Artistic (?) view of the algorithm3

Let I be a challenge ideal.

Logx (h) 1. Quantum decomposition
/// Apply Log o
P Logy (h) = Logk(g) + Log . (u) €
. Log ;- (u) g/K(h/u) Logg (9) + Log . (O)

2. Short coset representative ?

1
/ \ 3. Hope thisis shortin I.
Log-unit h=g-u
lattice (h/“) =g

3Thanks to O. Bernard for the slide (particularly the tikz picture)
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Existing works

o [Cra+16] quantum polynomial-time or classical 27" time algorithm to
solve SG-PIP over cyclotomic fields

o [Bau+17] efficient classical algorithm to solve SG-PIP over multiquadratic
fields. Good results in practice.

— of the form Q(\/m7, ..., NGO
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Existing works

o [Cra+16] quantum polynomial-time or classical 27" time algorithm to
solve SG-PIP over cyclotomic fields

o [Bau+17] efficient classical algorithm to solve SG-PIP over multiquadratic
fields. Good results in practice.

— of the form Q(y/m1,...,/m;)

o [LPS20] Extend results of [Bau+17] to multicubic fields

— of the form Q(&/mq, ..., ¥m,)

— of the form Q(¢/my, ..., ¥/m,)

— fields of the form Q({/2, ¥/3) seem to be more resistant
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SVP of general ideals

General algorithms

Consider K a number field, I an ideal.

Fix S a set of prime ideals (generating the class group.)
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SVP of general ideals

General algorithms

Consider K a number field, I an ideal.

Fix S a set of prime ideals (generating the class group.)
1. Compute a S-generator of I,i.e. hst. (h) =1 -[[,cqp™
2. Reduce h, i.e. find s € O g such that h/s is short.

Two variants for step 2.
1. First reduce [], p*» ; then find a generator with the Log-embedding.

— [CDWA7] cyclotomic fields, subexponential approximation factor

2. Use the Log-S-embedding “ to reduce everything.

— [PHS19] all number fields, exponential preprocessing, subexponential
approximation factor

— [BR20] other def. of Logy 5, sSame asymptotic results, good results in
practice for cyclotomics up to dimensions 70.

“Log,s : @+ (Inlor(z)], ..., Infon ()], —vp, ()0 N0 (p1), - - o, —vp, ()10 Nic j (pr))
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View of an S-unit algorithm (Twisted-PHS)>

Let I be a challenge ideal.

Log(h) 1. Quantum decomposition output
/ Apply Log
/Log(s) B 2. Short coset representative ?
og(h/s) 3. Hope this is short in I.
/
1 v
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Bernard, Lesavourey, Nguyen, Roux-Langlois (2022)

Approximate Log(O}X(VS) over cyclotomic fields

Can we extend these good results to higher dimensions ?

Two major obstructions for experiments :
o Decomposition (k) =1 -] ,csp"
o Group of S-units (s) = [Tgcg P
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Bernard, Lesavourey, Nguyen, Roux-Langlois (2022)

Approximate Log(O;(’S) over cyclotomic fields

Can we extend these good results to higher dimensions ?

Two major obstructions for experiments :
o Decomposition (k) =1 -]],csp"
o Group of S-units (s) = [[gcq "

Use new results of Bernard and Kuéera (2021) on Stickelberger ideal
o Obtain explicit short basis of Sy,

o Itis constructive : the associated generators can be computed efficiently
o Free family of short S-units

Allows us to approximate Log(Op ) with a full-rank sublattice
Cyclotomic units

o Explicit Stickelberger generators

o Real SN K -units — only part sub-exponential ; dimension n/2
o 2-saturation to reduce the index

[¢]
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Experimental results®

Cyclotomic fields with almost all conductors, up to dimension 210.
Simulated targets in the Log-space.
Randomised drift strategy.

6Code available at https://github.com/ob3rnard/Tw-Sti.
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Conclusion

1. Upper-bounds on approx. factors reached by S-unit algorithms up to
degree 210.

2. Twisted-PHS more efficient than CDW. (with simple CVP/BDD solver)

3. Twisted-PHS comparable to volumetic lower bound shown in [DPW19].
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Conclusion

1. Upper-bounds on approx. factors reached by S-unit algorithms up to
degree 210.

2. Twisted-PHS more efficient than CDW. (with simple CVP/BDD solver)

3. Twisted-PHS comparable to volumetic lower bound shown in [DPW19].

What does it mean for lattice-based cryptography ?

1. One should consider PHS / Twisted-PHS to evaluate the security of
Ideal-SVP. — crossover point around n = 7000 in [DPW19], should be
lower

2. Results not reassuring nor devastating.
3. Lattice-based crypto is safe (for now) : recall that it is based on Ring-LWE

or Module-LWE.

44 ] 45



What's next

1. Reduce the gap with Log-S-unit lattice.

— requires big p-saturation
— In the works ! (Generalisation of Couveignes’ and Thomé’s algorithms for
square-roots [BFL23] )

2. Consider other number fields (Kummer for example).
3. Study the geometrical structure of the Log-S-unit lattice.

4. Work on other specific algorithms (basis reduction,
enumeration)
— e.g. effective Module-LLL
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Thank you for your attention
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