
An introduction to lattice-based cryptography.

Andrea Lesavourey

INRIA Bordeaux

May 15, 2024

1 / 45

Introduction

Cryptographie à clef publique

Alice Bob

Security based on a hard mathematical problem.

Exemples : Factorisation (RSA) ou Logarithme discret (courbes elliptiques).

Applications :

§ Q � �

2 / 45

Cryptographie à clef publique

Alice Bob

Security based on a hard mathematical problem.

Exemples : Factorisation (RSA) ou Logarithme discret (courbes elliptiques).

Applications :

§ Q � �

2 / 45

Cryptographie post-quantique

Problem : Shor’s algorithms
Quantum polynomial time.

Need for a post-quantum cryptography :
classical computations;

safe under quantum attacks.

Euclidean lattices, Error correcting codes,
Polynomial systems, Hash functions

Algebraic variety (elliptic curves).

3 / 45

Calls for standardisation

NIST in 2016.

End (almost) of the process.

Encryption schemes :
Lattices : Kyber.

Signatures :
Lattices : Dilithium, Falcon.
Hash functions : Sphincs+.

Un round de plus :
Codes : Bike, Classic McEliece, HQC

4 / 45

Outline of the presentation

1. Quantum computing and Shor’s algorithm.

2. Lattice-based cryptography.

5 / 45

Quantum Computing

Quantum bits

◦ One bit : 0 or 1

One quantum bit or qubit : α |0⟩+ β |1⟩ with α, β ∈ C such that
|α|2 + |β|2 = 1

◦ Two bits : 00, 01, 10, 11
Two qubits : α |00⟩+ β |01⟩+ γ |10⟩+ δ |11⟩ with α, β, γ, δ ∈ C such that
|α|2 + |β|2 + |γ|2 + |δ|2 = 1

◦ n bits : i1i2 · · · in
n qubits :

∑2n−1
i=0 αi |i⟩ with αi ∈ C such that

∑2n−1
i=0 |αi|2 = 1

6 / 45

Quantum bits

◦ One bit : 0 or 1
One quantum bit or qubit : α |0⟩+ β |1⟩ with α, β ∈ C such that
|α|2 + |β|2 = 1

◦ Two bits : 00, 01, 10, 11
Two qubits : α |00⟩+ β |01⟩+ γ |10⟩+ δ |11⟩ with α, β, γ, δ ∈ C such that
|α|2 + |β|2 + |γ|2 + |δ|2 = 1

◦ n bits : i1i2 · · · in
n qubits :

∑2n−1
i=0 αi |i⟩ with αi ∈ C such that

∑2n−1
i=0 |αi|2 = 1

6 / 45

Quantum bits

◦ One bit : 0 or 1
One quantum bit or qubit : α |0⟩+ β |1⟩ with α, β ∈ C such that
|α|2 + |β|2 = 1

◦ Two bits : 00, 01, 10, 11

Two qubits : α |00⟩+ β |01⟩+ γ |10⟩+ δ |11⟩ with α, β, γ, δ ∈ C such that
|α|2 + |β|2 + |γ|2 + |δ|2 = 1

◦ n bits : i1i2 · · · in
n qubits :

∑2n−1
i=0 αi |i⟩ with αi ∈ C such that

∑2n−1
i=0 |αi|2 = 1

6 / 45

Quantum bits

◦ One bit : 0 or 1
One quantum bit or qubit : α |0⟩+ β |1⟩ with α, β ∈ C such that
|α|2 + |β|2 = 1

◦ Two bits : 00, 01, 10, 11
Two qubits : α |00⟩+ β |01⟩+ γ |10⟩+ δ |11⟩ with α, β, γ, δ ∈ C such that
|α|2 + |β|2 + |γ|2 + |δ|2 = 1

◦ n bits : i1i2 · · · in
n qubits :

∑2n−1
i=0 αi |i⟩ with αi ∈ C such that

∑2n−1
i=0 |αi|2 = 1

6 / 45

Quantum bits

◦ One bit : 0 or 1
One quantum bit or qubit : α |0⟩+ β |1⟩ with α, β ∈ C such that
|α|2 + |β|2 = 1

◦ Two bits : 00, 01, 10, 11
Two qubits : α |00⟩+ β |01⟩+ γ |10⟩+ δ |11⟩ with α, β, γ, δ ∈ C such that
|α|2 + |β|2 + |γ|2 + |δ|2 = 1

◦ n bits : i1i2 · · · in

n qubits :
∑2n−1

i=0 αi |i⟩ with αi ∈ C such that
∑2n−1

i=0 |αi|2 = 1

6 / 45

Quantum bits

◦ One bit : 0 or 1
One quantum bit or qubit : α |0⟩+ β |1⟩ with α, β ∈ C such that
|α|2 + |β|2 = 1

◦ Two bits : 00, 01, 10, 11
Two qubits : α |00⟩+ β |01⟩+ γ |10⟩+ δ |11⟩ with α, β, γ, δ ∈ C such that
|α|2 + |β|2 + |γ|2 + |δ|2 = 1

◦ n bits : i1i2 · · · in
n qubits :

∑2n−1
i=0 αi |i⟩ with αi ∈ C such that

∑2n−1
i=0 |αi|2 = 1

6 / 45

Operations

Evolution of a quantum system : described by a unitary operator U ∈ U2n(C).

Typical examples for a single qubit include :

H =
1√
2

[
1 1
1 −1

]

T =

[
1 0
0 exp(iπ/4)

]

H(α |0⟩+ β |1⟩) = α(1√
2
|0⟩+ 1√

2
|1⟩) + β(1√

2
|0⟩ − 1√

2
|1⟩)

Superposition allows quick multi-evaluation

7 / 45

Measurements

Quantum measurements : set {Mm} of measurement operators. m are the
possible outcomes

◦ |ψ⟩ −→ P(m) = ∥Mm |ψ⟩ ∥2

◦ |ψ⟩ 7−→ Mm |ψ⟩√
∥Mm |ψ⟩ ∥

In general : operators correspond to canonical basis

8 / 45

Example

For |ψ⟩ = 1√
2
(|0⟩+ |1⟩)

◦ P(0) = P(1) = 1
2

◦ If 0 measured then |ψ⟩ = |0⟩

For |ψ⟩ = 1
2 (|00⟩+ |01⟩) +

1√
2
|11⟩

◦ Measure the second register : P (1) = 1
4 + 1

2 = 3
4

◦ If 1 measured then |ψ⟩ = 1√
3
|01⟩+

√
2√
3
|11⟩

9 / 45

Example

For |ψ⟩ = 1√
2
(|0⟩+ |1⟩)

◦ P(0) = P(1) = 1
2

◦ If 0 measured then |ψ⟩ = |0⟩

For |ψ⟩ = 1
2 (|00⟩+ |01⟩) +

1√
2
|11⟩

◦ Measure the second register : P (1) = 1
4 + 1

2 = 3
4

◦ If 1 measured then |ψ⟩ = 1√
3
|01⟩+

√
2√
3
|11⟩

9 / 45

Fast computation

Quantum superposition : allows fast computation by multi-evaluation.

U =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 and |ψ⟩ = 1√
2
(|00⟩+ |01⟩) then applying U gives

1√
2
(|10⟩+ |11⟩)

10 / 45

Fast computation

Quantum superposition : allows fast computation by multi-evaluation.

U =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 and |ψ⟩ = 1√
2
(|00⟩+ |01⟩) then applying U gives

1√
2
(|10⟩+ |11⟩)

10 / 45

Fast computation

Consider f : {0, 1}n → {0, 1}m.

Assume there is a unitary transform

Uf : |x⟩ |y⟩ 7−→ |x⟩ |y ⊕ f(x)⟩ .

Uf ·
∑
x

αx |x⟩ |0⟩ =
∑
x

αx |x⟩ |f(x)⟩

all values f(x) are present

Problem : Find the desired information through measurement.

11 / 45

Fast computation

Consider f : {0, 1}n → {0, 1}m.

Assume there is a unitary transform

Uf : |x⟩ |y⟩ 7−→ |x⟩ |y ⊕ f(x)⟩ .

Uf ·

∑
x

αx |x⟩ |0⟩

=
∑
x

αx |x⟩ |f(x)⟩

all values f(x) are present

Problem : Find the desired information through measurement.

11 / 45

Fast computation

Consider f : {0, 1}n → {0, 1}m.

Assume there is a unitary transform

Uf : |x⟩ |y⟩ 7−→ |x⟩ |y ⊕ f(x)⟩ .

Uf ·
∑
x

αx |x⟩ |0⟩ =
∑
x

αx |x⟩ |f(x)⟩

all values f(x) are present

Problem : Find the desired information through measurement.

11 / 45

Fast computation

Consider f : {0, 1}n → {0, 1}m.

Assume there is a unitary transform

Uf : |x⟩ |y⟩ 7−→ |x⟩ |y ⊕ f(x)⟩ .

Uf ·
∑
x

αx |x⟩ |0⟩ =
∑
x

αx |x⟩ |f(x)⟩

all values f(x) are present

Problem : Find the desired information through measurement.

11 / 45

Grover’s algorithm

Our goal is to find one element within a set of size N(= 2n).

Assume as well that we have access to an oracle O, efficiently computable.

We will use two operators :

1. UO : |x⟩ |y⟩ 7→ |x⟩ |y ⊕O(x)⟩ . (Call to oracle)

2. S :
∑

x αx |x⟩ 7→
∑

x(2ᾱ− αx) |x⟩. (Symmetry around mean of amplitudes)

12 / 45

Grover’s algorithm

1 2 3 4 5 6 7 8

What happens when we apply UO and S one after another ?

Amplification of amplitude !

Need around
√
N iterations to retrieve the solution with a high enough

probability.

13 / 45

Grover’s algorithm

1 2 3 4 5 6 7 8

When |y⟩ = (|0⟩ − |1⟩)/
√
2,

UO
∑
x

αx |x⟩ |y⟩ =
∑
x

(−1)O(x)αx |x⟩ |y⟩

What happens when we apply UO and S one after another ?

Amplification of amplitude !

Need around
√
N iterations to retrieve the solution with a high enough

probability.

13 / 45

Grover’s algorithm

1 2 3 4 5 6 7 8

S operates a symmetry around the average amplitude !

What happens when we apply UO and S one after another ?

Amplification of amplitude !

Need around
√
N iterations to retrieve the solution with a high enough

probability.

13 / 45

Grover’s algorithm

1 2 3 4 5 6 7 8

S operates a symmetry around the average amplitude !

What happens when we apply UO and S one after another ?

Amplification of amplitude !

Need around
√
N iterations to retrieve the solution with a high enough

probability.

13 / 45

Grover’s algorithm

1 2 3 4 5 6 7 8

What happens when we apply UO and S one after another ?

Amplification of amplitude !

Need around
√
N iterations to retrieve the solution with a high enough

probability.

13 / 45

Grover’s algorithm

1 2 3 4 5 6 7 8

What happens when we apply UO and S one after another ?

Amplification of amplitude !

Need around
√
N iterations to retrieve the solution with a high enough

probability.

13 / 45

Grover’s algorithm

1 2 3 4 5 6 7 8

What happens when we apply UO and S one after another ?

Amplification of amplitude !

Need around
√
N iterations to retrieve the solution with a high enough

probability.

13 / 45

Grover’s algorithm

1 2 3 4 5 6 7 8

What happens when we apply UO and S one after another ?

Amplification of amplitude !

Need around
√
N iterations to retrieve the solution with a high enough

probability.

13 / 45

Shor’s algorithm

There are two core ingredidents of Shor’s algorithms :

1. the fast computation of a Quantum Fourier Transform (QFT) ;

2. the computation of the hidden period of a given function f .

14 / 45

Shor’s algorithm
Computation of the QFT

First let us denote by ζN a N th root of unity, i.e. ζN = exp 2iπ/N .

In the classical setting, we have the Discrete Fourier Transform :

DFT : (x0, . . . , xN−1) 7→ (y0, . . . , yN−1)

with

yk =
1√
N

N−1∑
i=0

xi · ζ−i·k
N .

In the quantum setting, we have the Quantum Fourier Transform :

QFT :

N−1∑
i=0

xi |i⟩ 7→
N−1∑
i=0

yi |i⟩

with

yk =
1√
N

N−1∑
i=0

xi · ζi·kN .

15 / 45

Shor’s algorithm
Computation of the QFT

First let us denote by ζN a N th root of unity, i.e. ζN = exp 2iπ/N .

In the classical setting, we have the Discrete Fourier Transform :

DFT : (x0, . . . , xN−1) 7→ (y0, . . . , yN−1)

with

yk =
1√
N

N−1∑
i=0

xi · ζ−i·k
N .

In the quantum setting, we have the Quantum Fourier Transform :

QFT :

N−1∑
i=0

xi |i⟩ 7→
N−1∑
i=0

yi |i⟩

with

yk =
1√
N

N−1∑
i=0

xi · ζi·kN .

15 / 45

Shor’s algorithm
Computation of the QFT

We can factorise the QFT :

QFT :

N−1∑
i=0

xi |i⟩ 7→
1√
N

n⊗
i=1

(
|0⟩+ ζx·2

n−i

N |1⟩
)
.

If we adopt the notation [x1, · · ·xk] =
∑k

i=1 xi · 2−i, we also have :

QFT :

N−1∑
i=0

xi |i⟩ 7→
1√
N

n⊗
j=1

(
|0⟩+ e2iπ[xn−j+1,...,xn] |1⟩

)
.

This can be computed by successive application of rotation gates :

Rk =

[
1 0
0 exp(2iπ/2k)

]

We obtain a circuit with O(n2) gates, where N = 2n i.e. O(logN) gates.

16 / 45

Shor’s algorithm
Computation of the QFT

We can factorise the QFT :

QFT :

N−1∑
i=0

xi |i⟩ 7→
1√
N

n⊗
i=1

(
|0⟩+ ζx·2

n−i

N |1⟩
)
.

If we adopt the notation [x1, · · ·xk] =
∑k

i=1 xi · 2−i, we also have :

QFT :

N−1∑
i=0

xi |i⟩ 7→
1√
N

n⊗
j=1

(
|0⟩+ e2iπ[xn−j+1,...,xn] |1⟩

)
.

This can be computed by successive application of rotation gates :

Rk =

[
1 0
0 exp(2iπ/2k)

]

We obtain a circuit with O(n2) gates, where N = 2n i.e. O(logN) gates.

16 / 45

Shor’s algorithm
Computation of the QFT

We can factorise the QFT :

QFT :

N−1∑
i=0

xi |i⟩ 7→
1√
N

n⊗
i=1

(
|0⟩+ ζx·2

n−i

N |1⟩
)
.

If we adopt the notation [x1, · · ·xk] =
∑k

i=1 xi · 2−i, we also have :

QFT :

N−1∑
i=0

xi |i⟩ 7→
1√
N

n⊗
j=1

(
|0⟩+ e2iπ[xn−j+1,...,xn] |1⟩

)
.

This can be computed by successive application of rotation gates :

Rk =

[
1 0
0 exp(2iπ/2k)

]

We obtain a circuit with O(n2) gates, where N = 2n i.e. O(logN) gates.
16 / 45

Shor’s algorithm
Computing a hidden period

We are given a r-periodic function f efficiently computable through Uf and
we wish to recover r.

1. Prepare the state |ψ⟩ = 1√
N

∑
x |x⟩ |0⟩.

2. Apply f as Uf |ψ⟩ = 1√
N

∑
x |x⟩ |f(x)⟩.

3. Measure wrt to the 2nd register : 1√
N/r

∑N/r−1
k=0 |x0 + k · r⟩ for a given x0.

4. Apply the QFT : 1√
r

∑r−1
j=0 αj |jNr ⟩ .

5. Measure to obtain jN/r =⇒ j/r ; if gcd(j, r) = 1 then r can be
recovered efficiently.

17 / 45

Shor’s algorithm
Conclusion

This fast period-finding strategy can be applied to :

◦ factorise integers;

◦ solve the DLP;

◦ solve the phase estimation problem.

There is more ! Generalisation of this approach can be used to solve classical
number theoretical problems, such as :

◦ the computation of (S-)units of a number field;

◦ determination of the class group;

◦ finding the generator of a principal ideal I = (g).

18 / 45

Shor’s algorithm
Conclusion

This fast period-finding strategy can be applied to :

◦ factorise integers;

◦ solve the DLP;

◦ solve the phase estimation problem.

There is more ! Generalisation of this approach can be used to solve classical
number theoretical problems, such as :

◦ the computation of (S-)units of a number field;

◦ determination of the class group;

◦ finding the generator of a principal ideal I = (g).
18 / 45

Conclusion

◦ Superposition : fast multi-evaluation

◦ Quantum Fourier Transform : detect period
◦ Almost all of exponential speed-ups

◦ Problem : Find desired result without structure
◦ Search algorithm : only quadratic speed-up

19 / 45

Euclidean lattices

Euclidean lattices
General context

Definition
We call lattice any discrete subgroup L of Rn where n is a positive integer.

◦ Any set B of free vectors which
generates L is called a basis.

◦ There are infinitely many bases.

◦ Some are better than others :
orthogonality, short vectors

20 / 45

Problems on lattices

0

γ
×

λ 1
(L

)

t

21 / 45

Problems on lattices

0

γ
×

λ 1
(L

)

t

Shortest Vector Problem (SVP) : Find a shortest vector of L \ {0}.

Note λ1(L) its norm.

21 / 45

Problems on lattices

0
γ
×

λ 1
(L

)

t

Approximate Shortest Vector Problem (Approx-SVP) : Find a vector of L with
norm less than γ × λ1(L).

21 / 45

Problems on lattices

0

γ
×

λ 1
(L

)

t

Closest Vector Problem (CVP): Given t a target vector, find a vector of L
closest to t

21 / 45

Problems on lattices

0

γ
×

λ 1
(L

)

t

Approximate Closest Vector Problem (Approx-CVP): Given t a target vector,
find a vector of L within distance γ × d(t,L) of t

21 / 45

Problems on lattices

0

γ
×

λ 1
(L

)

t

Approximate Closest Vector Problem (Approx-CVP): Given t a target vector,
find a vector of L within distance γ × d(t,L) of t

1
√
n poly(n) exp(n)

exp(n) exp(n) poly(n)

γ

Complexités
21 / 45

Problems on lattices

0

γ
×

λ 1
(L

)

t

Approximate Closest Vector Problem (Approx-CVP): Given t a target vector,
find a vector of L within distance γ × d(t,L) of t

21 / 45

Problems on lattices

0

γ
×

λ 1
(L

)

t

Approximate Closest Vector Problem (Approx-CVP): Given t a target vector,
find a vector of L within distance γ × d(t,L) of t

Equivalently, find small t′ ≡ t mod L → reduction modulo L

Guaranteed Distance Decoding (GDD) : Given any vector t in span(L), find
t′ ≡ t mod L such that ∥t′∥ ⩽ γλ1(L).(knowing that it exists)

21 / 45

Reducing modulo a lattice

Fix B = (b1, . . . ,bn) a basis of L and t ∈ R · b1 ⊕ · · · ⊕ R · bn.

Write t =
∑n

i=1 ti · bi, with ti ∈ R.

Two main algorithms used in practice :

Babaı̈’s round-off
Output

∑n
i=1(ti − ⌊ti⌉) · bi;

Ensure that the output is in [−1/2, 1/2[n×B.

Babaı̈’s nearest plane
Use the GSO B̃ instead;

Ensure that the output is in [−1/2, 1/2[n×B̃.

22 / 45

GGH-like schemes

Lattice-based cryptography : GGH-like schemes
Encryption

Public key : a “bad” basis H, typically the HNF.

Secret key : a “good” basis, which is a trapdoor for the problem.

Encryption : c = Encrypt(m,H) = s ·H+m where s ∈ Zn and m is
short.

Decryption : Decrypt(c,B) = Reduce(c,B) ▷ GDD solver

Assume that :

◦ ∥m∥ < M ; → bound on the message space

◦ ∥Reduce(t,L)∥ < R. → bound on the reduction capacity

If R+M < λ1(L) then Reduce(c,L) = m.

23 / 45

Lattice-based cryptography : GGH-like schemes
Digital signature

Public key : a “bad” basis H, typically the HNF.

Secret key : a “good” basis B, which is the trapdoor of the problem.

Signature : s = Sign(m,B) = Reduce(m,B).

Verification : s is short and s−m ∈ L.

Problem: Babäı’s algorithms leak the secret basis !
◦ GGH and original NTRUsign use Babaı̈’s round-off;
◦ Works also on more complex structures (zonotopes);
◦ Works with more general distribution.

24 / 45

Nguyen-Regev statistical attack

◦ E[s · sT] = B ·BT;

◦ We can do as follows :
1. compute an

amproximation of
B ·BT;

2. find an approximate
secret vector with a
gradient descent; draw

random vector and minimise the 4th

moment

3. recover the secret
vector with one of
Babaı̈’s algos.

Counter-measure : Draw from distribution independent of the secret basis : discrete
gaussian as in [GPV08]

Cons : not that efficient and requires floats.

25 / 45

Nguyen-Regev statistical attack

◦ E[s · sT] = B ·BT;

◦ We can do as follows :
1. compute an

amproximation of
B ·BT;

2. find an approximate
secret vector with a
gradient descent; draw

random vector and minimise the 4th

moment

3. recover the secret
vector with one of
Babaı̈’s algos.

Counter-measure : Draw from distribution independent of the secret basis : discrete
gaussian as in [GPV08]

Cons : not that efficient and requires floats.

25 / 45

Nguyen-Regev statistical attack

◦ E[s · sT] = B ·BT;

◦ We can do as follows :
1. compute an

amproximation of
B ·BT;

2. find an approximate
secret vector with a
gradient descent; draw

random vector and minimise the 4th

moment

3. recover the secret
vector with one of
Babaı̈’s algos.

Counter-measure : Draw from distribution independent of the secret basis : discrete
gaussian as in [GPV08]

Cons : not that efficient and requires floats.

25 / 45

Nguyen-Regev statistical attack

◦ E[s · sT] = B ·BT;

◦ We can do as follows :
1. compute an

amproximation of
B ·BT;

2. find an approximate
secret vector with a
gradient descent; draw

random vector and minimise the 4th

moment

3. recover the secret
vector with one of
Babaı̈’s algos.

Counter-measure : Draw from distribution independent of the secret basis : discrete
gaussian as in [GPV08]

Cons : not that efficient and requires floats.

25 / 45

Nguyen-Regev statistical attack

◦ E[s · sT] = B ·BT;

◦ We can do as follows :
1. compute an

amproximation of
B ·BT;

2. find an approximate
secret vector with a
gradient descent; draw

random vector and minimise the 4th

moment

3. recover the secret
vector with one of
Babaı̈’s algos.

Counter-measure : Draw from distribution independent of the secret basis : discrete
gaussian as in [GPV08]

Cons : not that efficient and requires floats.

25 / 45

Nguyen-Regev statistical attack

◦ E[s · sT] = B ·BT;

◦ We can do as follows :
1. compute an

amproximation of
B ·BT;

2. find an approximate
secret vector with a
gradient descent; draw

random vector and minimise the 4th

moment

3. recover the secret
vector with one of
Babaı̈’s algos.

Counter-measure : Draw from distribution independent of the secret basis : discrete
gaussian as in [GPV08]

Cons : not that efficient and requires floats.

25 / 45

Nguyen-Regev statistical attack

◦ E[s · sT] = B ·BT;

◦ We can do as follows :
1. compute an

amproximation of
B ·BT;

2. find an approximate
secret vector with a
gradient descent; draw

random vector and minimise the 4th

moment

3. recover the secret
vector with one of
Babaı̈’s algos.

Counter-measure : Draw from distribution independent of the secret basis : discrete
gaussian as in [GPV08]

Cons : not that efficient and requires floats.
25 / 45

Recent lattice-based
cryptography

Lattice-based cryptography1

1
√
n poly(n) exp(n)

exp(n) exp(n) poly(n)

NP-hard NP∩coNP CRYPTO P

γ

Running time

Hardness

Use intermediate problems

Short Integer Solution (SIS)

Learning With Errors (LWE)

1Freely taken from A. Roux-Langlois
26 / 45

Lattice-based cryptography
SIS and LWE : Two good average case problems

Short Integer Solution (SIS)
Fix q, n ∈ N.

Input: A
U← Mn(Z/qZ)

Goal: Find short s ∈ Zn | As = 0 mod q

Learning With Error (LWE)
Fix q, n,m ∈ N.

Input: (A, b = As+ e),
where A

U← Mm,n(Z/qZ),
s

Ds← (Z/qZ)n, e De← Zm

Goal: Find s.

Approx-SVP
γ >
√
n

Worst-case to
average-case

27 / 45

Lattice-based cryptography
SIS and LWE : Two good average case problems

Short Integer Solution (SIS)
Fix q, n ∈ N.

Input: A
U← Mn(Z/qZ)

Goal: Find short s ∈ Zn | As = 0 mod q

Learning With Error (LWE)
Fix q, n,m ∈ N.

Input: (A, b = As+ e),
where A

U← Mm,n(Z/qZ),
s

Ds← (Z/qZ)n, e De← Zm

Goal: Find s.

Approx-SVP
γ >
√
n

Worst-case to
average-case

27 / 45

A closer look at LWE

Problem: Solve a system of m approximate equations in n variables modulo
an integer q.

s1 + 2s2 + 4s3 ≈ 2 mod 5

3s1 + 4s2 + 2s3 ≈ 1 mod 5

s2 + 2s3 ≈ 4 mod 5

2s1 + 3s3 ≈ 2 mod 5

4s1 + 2s2 + 2s3 ≈ 3 mod 5

28 / 45

A closer look at LWE

More formally, we fix n ⩾ 1, q ⩾ 2 and α ∈]0, 1[.

Given s = [s1, . . . , sn] ∈ (Z/qZ)n, we define a LWE sample to be :

(a, (a | s) + e) ,

where a← U ((Z/qZ)n) and e← DZ,αq .

We will write Dn,q,α(s) the given distribution.

The LWEn
α,q problem then is :

Given m samples of Dn,q,α(s), retrieve s.

29 / 45

A closer look at LWE

More formally, we fix n ⩾ 1, q ⩾ 2 and α ∈]0, 1[.

Given s = [s1, . . . , sn] ∈ (Z/qZ)n, we define a LWE sample to be :

(a, (a | s) + e) ,

where a← U ((Z/qZ)n) and e← DZ,αq .

We will write Dn,q,α(s) the given distribution.

The LWEn
α,q problem then is :

Given m samples of Dn,q,α(s), retrieve s.

29 / 45

A closer look at LWE

Given find

A A
s

+ e
s

m

n

◦ A← U (Mm,n(Z/qZ))

◦ s← U ((Z/qZ)n)

◦ e← DZm,αq short

◦ One can vary the distributions.

◦ Still active area of research.

30 / 45

Lattice-based cryptography
Structured variants of LWE

Approx-SVP LWE - SIS Cryptographic
constructions

Problem of efficiency Structured variants

Ring-LWE

Module-LWE

Ring-LWE
Fix q ∈ N, K a number field, Rq = OK/(q)

A Ring-LWE sample is (a, b = as+ e),
where a

U← Rq , s Ds← Rq, e
De← R

Goal: Find s

Think K = Q[X]/(Xn + 1)

and OK = Z[X]/(Xn + 1)

for n = 2k .

31 / 45

Lattice-based cryptography
Structured variants of LWE

Approx-SVP LWE - SIS Cryptographic
constructions

Problem of efficiency Structured variants

Ring-LWE

Module-LWE

Ring-LWE
Fix q ∈ N, K a number field, Rq = OK/(q)

A Ring-LWE sample is (a, b = as+ e),
where a

U← Rq , s Ds← Rq, e
De← R

Goal: Find s

Think K = Q[X]/(Xn + 1)

and OK = Z[X]/(Xn + 1)

for n = 2k .
31 / 45

Lattice-based cryptography
Ring-LWE

Idea : Replace Zn by a polynomial ring !

Fix q ∈ N, K a number field, Rq = OK/(q).

Think K = Q[X]/(Xn +1) and OK = Z[X]/(Xn +1) for n = 2k .

a ∈ K can be represented by the matrix of its action by left
multiplication :

[a] : s 7→ a · s.

LWE Ring-LWE

A

a1
a2

am

32 / 45

Lattice-based cryptography
Ring-LWE

Idea : Replace Zn by a polynomial ring !

Fix q ∈ N, K a number field, Rq = OK/(q).

Think K = Q[X]/(Xn +1) and OK = Z[X]/(Xn +1) for n = 2k .

a ∈ K can be represented by the matrix of its action by left
multiplication :

[a] : s 7→ a · s.

LWE Ring-LWE

A

a1
a2

am
32 / 45

Lattice-based cryptography
Module-LWE

Idea : Replace Z by a polynomial ring !

Fix q ∈ N, K a number field, Rq = OK/(q).

Think K = Q[X]/(Xn +1) and OK = Z[X]/(Xn +1) for n = 2k .

a ∈ K can be represented by the matrix of its action by left
multiplication :

[a] : s 7→ a · s.

LWE Module-LWE

A

a1,1

a2,1

am,1

a1,d

a2,d

am,d

33 / 45

Lattice-based cryptography
Module-LWE

Idea : Replace Z by a polynomial ring !

Fix q ∈ N, K a number field, Rq = OK/(q).

Think K = Q[X]/(Xn +1) and OK = Z[X]/(Xn +1) for n = 2k .

a ∈ K can be represented by the matrix of its action by left
multiplication :

[a] : s 7→ a · s.

LWE Module-LWE

A

a1,1

a2,1

am,1

a1,d

a2,d

am,d

33 / 45

Lattice-based cryptography
Structured variants of LWE

Ring-LWE

Module-LWE

Approx-SVP over
ideal lattices
(Ideal-SVP)

Approx-SVP over
module lattices
(Module-SVP)

w.-c. to a.-c.

w.-c. to a.-c.

w.-c. to a.-c.

34 / 45

Lattice-based cryptography
Structured variants of LWE

Ring-LWE

Module-LWE

Approx-SVP over
ideal lattices
(Ideal-SVP)

Approx-SVP over
module lattices
(Module-SVP)

w.-c. to a.-c.

w.-c. to a.-c.

w.-c. to a.-c.

34 / 45

Some definitions
Number field K ∼= Q[X]/(P (X))

g ∈ K ⇐⇒ pol. with rational coeffs

g ∈ K ⇐⇒ (g0, . . . , gn−1) ∈ Qn

θ root of P (X)↔ σ complex embedding

Minkowski (or canonical) embedding :
σK : g ∈ K 7→ (σ(g))σ = (g(θ))θ

Ideal I = (g, h) = gOK + hOK

Principal ideal I = (g) = gOK

Ideal lattice : generated by

coeffs of gXi, hXj , i, j ∈ J1, nK

or(
σK(gXi)

)
i

,
(
σK(hXj)

)
j

Q(ζ8) ∼= Q[X]/(X4 + 1)

g = 1/2 +X + 3X2 − 2X3, gi ∈ Q

(1/2, 1, 3,−2) ∈ Q4

g 7→ g(ζ8) = 1/2 + ζ8 + 3ζ28 − 2ζ38

g 7→ g(ζ38) = 1/2 + ζ38 + 3ζ68 − 2ζ98


1 1 3 −2 ← g
2 1 1 3 ← gX
−3 2 1 1 ← gX2

−1 −3 2 1 ← gX3



Polynomial structure =⇒ efficient for storage and computations

35 / 45

Some definitions
Ring of integers OK ∼ Z[X]/(P (X))

(Not true in general)
g ∈ OK ⇐⇒ pol. with integral coeffs

g ∈ OK ⇐⇒ (g0, . . . , gn−1) ∈ Zn

Ideal I = (g, h) = gOK + hOK

Principal ideal I = (g) = gOK

Ideal lattice : generated by

coeffs of gXi, hXj , i, j ∈ J1, nK

or(
σK(gXi)

)
i

,
(
σK(hXj)

)
j

Z(ζ8) ∼= Z[X]/(X4 + 1)

g = 1 +X + 3X2 − 2X3, gi ∈ Z

(1, 1, 3,−2) ∈ Z4


1 1 3 −2 ← g
2 1 1 3 ← gX
−3 2 1 1 ← gX2

−1 −3 2 1 ← gX3



Polynomial structure =⇒ efficient for storage and computations

35 / 45

Some definitions
Ring of integers OK ∼ Z[X]/(P (X))

(Not true in general)
g ∈ OK ⇐⇒ pol. with integral coeffs

g ∈ OK ⇐⇒ (g0, . . . , gn−1) ∈ Zn

Ideal I = (g, h) = gOK + hOK

Principal ideal I = (g) = gOK

Ideal lattice : generated by

coeffs of gXi, hXj , i, j ∈ J1, nK

or(
σK(gXi)

)
i

,
(
σK(hXj)

)
j

Z(ζ8) ∼= Z[X]/(X4 + 1)

g = 1 +X + 3X2 − 2X3, gi ∈ Z

(1, 1, 3,−2) ∈ Z4


1 1 3 −2 ← g
2 1 1 3 ← gX
−3 2 1 1 ← gX2

−1 −3 2 1 ← gX3



Polynomial structure =⇒ efficient for storage and computations

35 / 45

Some definitions
Ring of integers OK ∼ Z[X]/(P (X))

(Not true in general)
g ∈ OK ⇐⇒ pol. with integral coeffs

g ∈ OK ⇐⇒ (g0, . . . , gn−1) ∈ Zn

Ideal I = (g, h) = gOK + hOK

Principal ideal I = (g) = gOK

Ideal lattice : generated by

coeffs of gXi, hXj , i, j ∈ J1, nK

or(
σK(gXi)

)
i

,
(
σK(hXj)

)
j

Z(ζ8) ∼= Z[X]/(X4 + 1)

g = 1 +X + 3X2 − 2X3, gi ∈ Z

(1, 1, 3,−2) ∈ Z4


1 1 3 −2 ← g
2 1 1 3 ← gX
−3 2 1 1 ← gX2

−1 −3 2 1 ← gX3



Polynomial structure =⇒ efficient for storage and computations
35 / 45

Overview of the situation

SVPγ is hard over general lattices

LWE is a good average-case problem

worst-case to average-case

Consider structured variants : Ring-LWE and Module-LWE

efficiency

How hard are Ideal-SVP and Module-SVP ?

worst-case to average-case

36 / 45

Overview of the situation

SVPγ is hard over general lattices

LWE is a good average-case problem

worst-case to average-case

Consider structured variants : Ring-LWE and Module-LWE

efficiency

How hard are Ideal-SVP and Module-SVP ?

worst-case to average-case

36 / 45

Overview of the situation

SVPγ is hard over general lattices

LWE is a good average-case problem

worst-case to average-case

Consider structured variants : Ring-LWE and Module-LWE

efficiency

How hard are Ideal-SVP and Module-SVP ?

worst-case to average-case

36 / 45

Overview of the situation

SVPγ is hard over general lattices

LWE is a good average-case problem

worst-case to average-case

Consider structured variants : Ring-LWE and Module-LWE

efficiency

How hard are Ideal-SVP and Module-SVP ?

worst-case to average-case

36 / 45

Approx-SVP over ideal lattices

SVP over principal ideals

Consider an intermediate problem.

Short Generator Principal Ideal Problem (SG-PIP):
Given a principal ideal I = (g) such that g is short, retrieve g.

1. Find a generator h = gu of I (u ∈ O×
K)

Can be done in polynomial time with a quantum computer

2. Find g given h.

Use the Log-embedding2 and the Log-unit lattice Log(O×
K)

2LogK : x 7→ (ln |σ1(x)|, . . . , ln |σn(x)|)
37 / 45

SVP over principal ideals

Consider an intermediate problem.

Short Generator Principal Ideal Problem (SG-PIP):
Given a principal ideal I = (g) such that g is short, retrieve g.

1. Find a generator h = gu of I (u ∈ O×
K)

Can be done in polynomial time with a quantum computer

2. Find g given h.

Use the Log-embedding2 and the Log-unit lattice Log(O×
K)

2LogK : x 7→ (ln |σ1(x)|, . . . , ln |σn(x)|)
37 / 45

Artistic (?) view of the algorithm3

1

Log-unit
lattice

Let I be a challenge ideal.

1. Quantum decomposition
Apply LogK
LogK(h) = LogK(g)+LogK(u) ∈
LogK(g) + LogK(O×

K)

2. Short coset representative ?

3. Hope this is short in I .

h = g · u

(h/u) = g

3Thanks to O. Bernard for the slide (particularly the tikz picture)
38 / 45

Artistic (?) view of the algorithm3

1

Log-unit
lattice

LogK(h)

Let I be a challenge ideal.

1. Quantum decomposition
Apply LogK
LogK(h) = LogK(g)+LogK(u) ∈
LogK(g) + LogK(O×

K)

2. Short coset representative ?

3. Hope this is short in I .

h = g · u

(h/u) = g

3Thanks to O. Bernard for the slide (particularly the tikz picture)
38 / 45

Artistic (?) view of the algorithm3

1

Log-unit
lattice

LogK(h)

Let I be a challenge ideal.

1. Quantum decomposition
Apply LogK
LogK(h) = LogK(g)+LogK(u) ∈
LogK(g) + LogK(O×

K)

2. Short coset representative ?

3. Hope this is short in I .

h = g · u

(h/u) = g

3Thanks to O. Bernard for the slide (particularly the tikz picture)
38 / 45

Artistic (?) view of the algorithm3

1

Log-unit
lattice

LogK(h)

Let I be a challenge ideal.

1. Quantum decomposition
Apply LogK
LogK(h) = LogK(g)+LogK(u) ∈
LogK(g) + LogK(O×

K)

2. Short coset representative ?

3. Hope this is short in I .

h = g · u

(h/u) = g

3Thanks to O. Bernard for the slide (particularly the tikz picture)
38 / 45

Artistic (?) view of the algorithm3

1

Log-unit
lattice

LogK(h)

LogK(u)

Let I be a challenge ideal.

1. Quantum decomposition
Apply LogK
LogK(h) = LogK(g)+LogK(u) ∈
LogK(g) + LogK(O×

K)

2. Short coset representative ?

3. Hope this is short in I .

h = g · u

(h/u) = g

3Thanks to O. Bernard for the slide (particularly the tikz picture)
38 / 45

Artistic (?) view of the algorithm3

1

Log-unit
lattice

LogK(h)

LogK(u) LogK(h/u)

Let I be a challenge ideal.

1. Quantum decomposition
Apply LogK
LogK(h) = LogK(g)+LogK(u) ∈
LogK(g) + LogK(O×

K)

2. Short coset representative ?

3. Hope this is short in I .

h = g · u

(h/u) = g

3Thanks to O. Bernard for the slide (particularly the tikz picture)
38 / 45

Existing works

◦ [Cra+16] quantum polynomial-time or classical 2n2/3+ϵ-time algorithm to
solve SG-PIP over cyclotomic fields

◦ [Bau+17] efficient classical algorithm to solve SG-PIP over multiquadratic
fields. Good results in practice.
→ of the form Q(

√
m1, . . . ,

√
mr)

◦ [LPS20] Extend results of [Bau+17] to multicubic fields
→ of the form Q(3

√
m1, . . . , 3

√
mr)

◦ [LPS21] General real Kummer extensions
→ of the form Q(p

√
m1, . . . , p

√
mr)

→ fields of the form Q(p
√
2, p
√
3) seem to be more resistant

39 / 45

Existing works

◦ [Cra+16] quantum polynomial-time or classical 2n2/3+ϵ-time algorithm to
solve SG-PIP over cyclotomic fields

◦ [Bau+17] efficient classical algorithm to solve SG-PIP over multiquadratic
fields. Good results in practice.
→ of the form Q(

√
m1, . . . ,

√
mr)

◦ [LPS20] Extend results of [Bau+17] to multicubic fields
→ of the form Q(3

√
m1, . . . , 3

√
mr)

◦ [LPS21] General real Kummer extensions
→ of the form Q(p

√
m1, . . . , p

√
mr)

→ fields of the form Q(p
√
2, p
√
3) seem to be more resistant

39 / 45

SVP of general ideals
General algorithms

Consider K a number field, I an ideal.

Fix S a set of prime ideals (generating the class group.)

1. Compute a S-generator of I , i.e. h s.t. (h) = I ·
∏

p∈S pvp

2. Reduce h, i.e. find s ∈ O×
K,S such that h/s is short.

Two variants for step 2.
1. First reduce

∏
p p

vp ; then find a generator with the Log-embedding.

→ [CDW17] cyclotomic fields, subexponential approximation factor

2. Use the Log-S-embedding 4 to reduce everything.
→ [PHS19] all number fields, exponential preprocessing, subexponential

approximation factor
→ [BR20] other def. of LogK,S , same asymptotic results, good results in

practice for cyclotomics up to dimensions 70.

4LogK,S : x 7→ (ln |σ1(x)|, . . . , ln |σn(x)|,−vp1 (x)lnNK/Q(p1), . . . ,−vpr (x)lnNK/Q(pr))
40 / 45

SVP of general ideals
General algorithms

Consider K a number field, I an ideal.

Fix S a set of prime ideals (generating the class group.)

1. Compute a S-generator of I , i.e. h s.t. (h) = I ·
∏

p∈S pvp

2. Reduce h, i.e. find s ∈ O×
K,S such that h/s is short.

Two variants for step 2.
1. First reduce

∏
p p

vp ; then find a generator with the Log-embedding.

→ [CDW17] cyclotomic fields, subexponential approximation factor

2. Use the Log-S-embedding 4 to reduce everything.
→ [PHS19] all number fields, exponential preprocessing, subexponential

approximation factor
→ [BR20] other def. of LogK,S , same asymptotic results, good results in

practice for cyclotomics up to dimensions 70.

4LogK,S : x 7→ (ln |σ1(x)|, . . . , ln |σn(x)|,−vp1 (x)lnNK/Q(p1), . . . ,−vpr (x)lnNK/Q(pr))
40 / 45

SVP of general ideals
General algorithms

Consider K a number field, I an ideal.

Fix S a set of prime ideals (generating the class group.)

1. Compute a S-generator of I , i.e. h s.t. (h) = I ·
∏

p∈S pvp

2. Reduce h, i.e. find s ∈ O×
K,S such that h/s is short.

Two variants for step 2.
1. First reduce

∏
p p

vp ; then find a generator with the Log-embedding.

→ [CDW17] cyclotomic fields, subexponential approximation factor

2. Use the Log-S-embedding 4 to reduce everything.
→ [PHS19] all number fields, exponential preprocessing, subexponential

approximation factor
→ [BR20] other def. of LogK,S , same asymptotic results, good results in

practice for cyclotomics up to dimensions 70.
4LogK,S : x 7→ (ln |σ1(x)|, . . . , ln |σn(x)|,−vp1 (x)lnNK/Q(p1), . . . ,−vpr (x)lnNK/Q(pr))

40 / 45

View of an S-unit algorithm (Twisted-PHS)5

1

Log-
S-unit
lattice

Let I be a challenge ideal.

1. Quantum decomposition output
Apply Log

2. Short coset representative ?
3. Hope this is short in I .

(h) = I ·
∏

p∈S pv

(s) =
∏

p∈S pw

(h/s) = I ·
∏

p∈S pv−w

5Thanks to O. Bernard for the slide (particularly the tikz picture)
41 / 45

View of an S-unit algorithm (Twisted-PHS)5

1

Log-
S-unit
lattice

Log(h)

Let I be a challenge ideal.

1. Quantum decomposition output
Apply Log

2. Short coset representative ?
3. Hope this is short in I .

(h) = I ·
∏

p∈S pv

(s) =
∏

p∈S pw

(h/s) = I ·
∏

p∈S pv−w

5Thanks to O. Bernard for the slide (particularly the tikz picture)
41 / 45

View of an S-unit algorithm (Twisted-PHS)5

1

Log-
S-unit
lattice

Log(h)

Let I be a challenge ideal.

1. Quantum decomposition output
Apply Log

2. Short coset representative ?

3. Hope this is short in I .

(h) = I ·
∏

p∈S pv

(s) =
∏

p∈S pw

(h/s) = I ·
∏

p∈S pv−w

5Thanks to O. Bernard for the slide (particularly the tikz picture)
41 / 45

View of an S-unit algorithm (Twisted-PHS)5

1

Log-
S-unit
lattice

Log(h)

Let I be a challenge ideal.

1. Quantum decomposition output
Apply Log

2. Short coset representative ?

3. Hope this is short in I .

(h) = I ·
∏

p∈S pv

(s) =
∏

p∈S pw

(h/s) = I ·
∏

p∈S pv−w

5Thanks to O. Bernard for the slide (particularly the tikz picture)
41 / 45

View of an S-unit algorithm (Twisted-PHS)5

1

Log-
S-unit
lattice

Log(h)

Log(s)

Let I be a challenge ideal.

1. Quantum decomposition output
Apply Log

2. Short coset representative ?

3. Hope this is short in I .

(h) = I ·
∏

p∈S pv

(s) =
∏

p∈S pw

(h/s) = I ·
∏

p∈S pv−w

5Thanks to O. Bernard for the slide (particularly the tikz picture)
41 / 45

View of an S-unit algorithm (Twisted-PHS)5

1

Log-
S-unit
lattice

Log(h)

Log(s)
Log(h/s)

Let I be a challenge ideal.

1. Quantum decomposition output
Apply Log

2. Short coset representative ?
3. Hope this is short in I .

(h) = I ·
∏

p∈S pv

(s) =
∏

p∈S pw

(h/s) = I ·
∏

p∈S pv−w

5Thanks to O. Bernard for the slide (particularly the tikz picture)
41 / 45

Bernard, Lesavourey, Nguyen, Roux-Langlois (2022)
Approximate Log(O×

K,S) over cyclotomic fields

Can we extend these good results to higher dimensions ?

Two major obstructions for experiments :
◦ Decomposition (h) = I ·

∏
p∈S pvp

◦ Group of S-units (s) =
∏

S∈S pep

Use new results of Bernard and Kučera (2021) on Stickelberger ideal
◦ Obtain explicit short basis of Sm

◦ It is constructive : the associated generators can be computed efficiently
◦ Free family of short S-units

Allows us to approximate Log(O×
K,S) with a full-rank sublattice

◦ Cyclotomic units
◦ Explicit Stickelberger generators
◦ Real S ∩K+

m-units → only part sub-exponential ; dimension n/2
◦ 2-saturation to reduce the index

42 / 45

Bernard, Lesavourey, Nguyen, Roux-Langlois (2022)
Approximate Log(O×

K,S) over cyclotomic fields

Can we extend these good results to higher dimensions ?

Two major obstructions for experiments :
◦ Decomposition (h) = I ·

∏
p∈S pvp

◦ Group of S-units (s) =
∏

S∈S pep

Use new results of Bernard and Kučera (2021) on Stickelberger ideal
◦ Obtain explicit short basis of Sm

◦ It is constructive : the associated generators can be computed efficiently
◦ Free family of short S-units

Allows us to approximate Log(O×
K,S) with a full-rank sublattice

◦ Cyclotomic units
◦ Explicit Stickelberger generators
◦ Real S ∩K+

m-units → only part sub-exponential ; dimension n/2
◦ 2-saturation to reduce the index

42 / 45

Bernard, Lesavourey, Nguyen, Roux-Langlois (2022)
Approximate Log(O×

K,S) over cyclotomic fields

Can we extend these good results to higher dimensions ?

Two major obstructions for experiments :
◦ Decomposition (h) = I ·

∏
p∈S pvp

◦ Group of S-units (s) =
∏

S∈S pep

Use new results of Bernard and Kučera (2021) on Stickelberger ideal
◦ Obtain explicit short basis of Sm

◦ It is constructive : the associated generators can be computed efficiently
◦ Free family of short S-units

Allows us to approximate Log(O×
K,S) with a full-rank sublattice

◦ Cyclotomic units
◦ Explicit Stickelberger generators
◦ Real S ∩K+

m-units → only part sub-exponential ; dimension n/2
◦ 2-saturation to reduce the index

42 / 45

Experimental results6

Cyclotomic fields with almost all conductors, up to dimension 210.
Simulated targets in the Log-space.
Randomised drift strategy.

6Code available at https://github.com/ob3rnard/Tw-Sti.
43 / 45

https://github.com/ob3rnard/Tw-Sti

Experimental results6

Cyclotomic fields with almost all conductors, up to dimension 210.
Simulated targets in the Log-space.
Randomised drift strategy.

6Code available at https://github.com/ob3rnard/Tw-Sti.
43 / 45

https://github.com/ob3rnard/Tw-Sti

Experimental results6

Cyclotomic fields with almost all conductors, up to dimension 210.
Simulated targets in the Log-space.
Randomised drift strategy.

6Code available at https://github.com/ob3rnard/Tw-Sti.
43 / 45

https://github.com/ob3rnard/Tw-Sti

Experimental results6

Cyclotomic fields with almost all conductors, up to dimension 210.
Simulated targets in the Log-space.
Randomised drift strategy.

6Code available at https://github.com/ob3rnard/Tw-Sti.
43 / 45

https://github.com/ob3rnard/Tw-Sti

Experimental results6

Cyclotomic fields with almost all conductors, up to dimension 210.
Simulated targets in the Log-space.
Randomised drift strategy.

6Code available at https://github.com/ob3rnard/Tw-Sti.
43 / 45

https://github.com/ob3rnard/Tw-Sti

Conclusion
1. Upper-bounds on approx. factors reached by S-unit algorithms up to

degree 210.

2. Twisted-PHS more efficient than CDW. (with simple CVP/BDD solver)

3. Twisted-PHS comparable to volumetic lower bound shown in [DPW19].

What does it mean for lattice-based cryptography ?
1. One should consider PHS / Twisted-PHS to evaluate the security of

Ideal-SVP.→ crossover point around n = 7000 in [DPW19], should be
lower

2. Results not reassuring nor devastating.

3. Lattice-based crypto is safe (for now) : recall that it is based on Ring-LWE
or Module-LWE.

44 / 45

Conclusion
1. Upper-bounds on approx. factors reached by S-unit algorithms up to

degree 210.

2. Twisted-PHS more efficient than CDW. (with simple CVP/BDD solver)

3. Twisted-PHS comparable to volumetic lower bound shown in [DPW19].

What does it mean for lattice-based cryptography ?
1. One should consider PHS / Twisted-PHS to evaluate the security of

Ideal-SVP.→ crossover point around n = 7000 in [DPW19], should be
lower

2. Results not reassuring nor devastating.

3. Lattice-based crypto is safe (for now) : recall that it is based on Ring-LWE
or Module-LWE.

44 / 45

What’s next

1. Reduce the gap with Log-S-unit lattice.
→ requires big p-saturation
→ In the works ! (Generalisation of Couveignes’ and Thomé’s algorithms for

square-roots [BFL23])

2. Consider other number fields (Kummer for example).

3. Study the geometrical structure of the Log-S-unit lattice.

4. Work on other specific algorithms (basis reduction,
enumeration)
→ e.g. effective Module-LLL

45 / 45

Thank you for your attention

References I

[Bau+17] Jens Bauch et al. “Short Generators Without Quantum Computers:
The Case of Multiquadratics”. In: Advances in Cryptology –
EUROCRYPT 2017. Ed. by Jean-Sébastien Coron and
Jesper Buus Nielsen. Cham: Springer International Publishing, 2017,
pp. 27–59. isbn: 978-3-319-56620-7.

[BFL23] Olivier Bernard, Pierre-Alain Fouque, and Andrea Lesavourey.
Computing e-th roots in number fields. 2023. arXiv: 2305.17425
[math.NT].

[BR20] Olivier Bernard and Adeline Roux-Langlois. “Twisted-PHS: Using the
Product Formula to Solve Approx-SVP in Ideal Lattices”. In:
Advances in Cryptology – ASIACRYPT 2020. Ed. by Shiho Moriai and
Huaxiong Wang. Cham: Springer International Publishing, 2020,
pp. 349–380. isbn: 978-3-030-64834-3.

[CDW17] R. Cramer, L. Ducas, and B. Wesolowski. “Short Stickelberger Class
Relations and Application to Ideal-SVP”. In: EUROCRYPT. 2017.

1 / 4

https://arxiv.org/abs/2305.17425
https://arxiv.org/abs/2305.17425

References II

[Cra+16] Ronald Cramer et al. “Recovering Short Generators of Principal
Ideals in Cyclotomic Rings”. In: Advances in Cryptology –
EUROCRYPT 2016. Ed. by Marc Fischlin and Jean-Sébastien Coron.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 559–585.
isbn: 978-3-662-49896-5.

[DPW19] Léo Ducas, Maxime Plançon, and Benjamin Wesolowski. “On the
Shortness of Vectors to Be Found by the Ideal-SVP Quantum
Algorithm”. In: Advances in Cryptology – CRYPTO 2019. Ed. by
Alexandra Boldyreva and Daniele Micciancio. Cham: Springer
International Publishing, 2019, pp. 322–351. isbn: 978-3-030-26948-7.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. “Trapdoors
for hard lattices and new cryptographic constructions”. In:
Proceedings of the Fortieth Annual ACM Symposium on Theory of
Computing. Victoria, British Columbia, Canada: Association for
Computing Machinery, 2008, pp. 197–206. isbn: 9781605580470. doi:
10.1145/1374376.1374407. url:
https://doi.org/10.1145/1374376.1374407.

2 / 4

https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407

References III

[LPS20] Andrea Lesavourey, Thomas Plantard, and Willy Susilo. “Short
Principal Ideal Problem in multicubic fields”. In: Journal of
Mathematical Cryptology 14.1 (2020), pp. 359–392. doi:
https://doi.org/10.1515/jmc-2019-0028. url: https:
//www.degruyter.com/view/journals/jmc/14/1/article-

p359.xml.
[LPS21] Andrea Lesavourey, Thomas Plantard, and Willy Susilo. On the Short

Principal Ideal Problem over some real Kummer fields. Cryptology
ePrint Archive, Report 2021/1623. https://ia.cr/2021/1623. 2021.

[PHS19] Alice Pellet-Mary, Guillaume Hanrot, and Damien Stehlé.
“Approx-SVP in Ideal Lattices with Pre-processing”. In: Advances in
Cryptology – EUROCRYPT 2019. Ed. by Yuval Ishai and
Vincent Rijmen. Cham: Springer International Publishing, 2019,
pp. 685–716. isbn: 978-3-030-17656-3.

3 / 4

https://doi.org/https://doi.org/10.1515/jmc-2019-0028
https://www.degruyter.com/view/journals/jmc/14/1/article-p359.xml
https://www.degruyter.com/view/journals/jmc/14/1/article-p359.xml
https://www.degruyter.com/view/journals/jmc/14/1/article-p359.xml
https://ia.cr/2021/1623

	Introduction
	Cryptography

	Quantum computing
	Lattice-based cryptography
	Background on number fields

	Finding short vectors in ideal lattices
	Principal ideals
	Ideal-SVP

	Appendix
	References

