An introduction to lattice-based cryptography.

Andrea Lesavourey

INRIA Bordeaux

May 15, 2024

Introduction

Cryptographie à clef publique

Security based on a hard mathematical problem.

Exemples : Factorisation (RSA) ou Logarithme discret (courbes elliptiques).

Cryptographie à clef publique

Security based on a *hard mathematical problem*.

Exemples : Factorisation (RSA) ou Logarithme discret (courbes elliptiques).

Applications :

M	
	<u> </u>

Cryptographie post-quantique

Calls for standardisation

NIST in 2016.

End (almost) of the process.

Encryption schemes : Lattices : Kyber.

Signatures :

Lattices : DILITHIUM, FALCON. Hash functions : SPHINCS+.

Un round de plus : Codes : Bike, Classic McEliece, HQC

- 1. Quantum computing and Shor's algorithm.
- 2. Lattice-based cryptography.

Quantum Computing

• One bit : 0 or 1

• One bit : 0 or 1

One quantum bit or qubit : $\alpha\,|0\rangle+\beta\,|1\rangle$ with $\alpha,\beta\in\mathbb{C}$ such that $|\alpha|^2+|\beta|^2=1$

• One bit : 0 or 1

One quantum bit or qubit : $\alpha\,|0\rangle+\beta\,|1\rangle$ with $\alpha,\beta\in\mathbb{C}$ such that $|\alpha|^2+|\beta|^2=1$

• Two bits : 00, 01, 10, 11

• One bit : 0 or 1

One quantum bit or qubit : $\alpha |0\rangle + \beta |1\rangle$ with $\alpha, \beta \in \mathbb{C}$ such that $|\alpha|^2 + |\beta|^2 = 1$

• Two bits : 00, 01, 10, 11

Two qubits : $\alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle$ with $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ such that $|\alpha|^2 + |\beta|^2 + |\gamma|^2 + |\delta|^2 = 1$

• One bit : 0 or 1

One quantum bit or qubit : $\alpha |0\rangle + \beta |1\rangle$ with $\alpha, \beta \in \mathbb{C}$ such that $|\alpha|^2 + |\beta|^2 = 1$

• Two bits : 00, 01, 10, 11

Two qubits : $\alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle$ with $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ such that $|\alpha|^2 + |\beta|^2 + |\gamma|^2 + |\delta|^2 = 1$

• n bits : $i_1 i_2 \cdots i_n$

• One bit : 0 or 1

One quantum bit or qubit : $\alpha |0\rangle + \beta |1\rangle$ with $\alpha, \beta \in \mathbb{C}$ such that $|\alpha|^2 + |\beta|^2 = 1$

• Two bits : 00, 01, 10, 11

Two qubits : $\alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle$ with $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ such that $|\alpha|^2 + |\beta|^2 + |\gamma|^2 + |\delta|^2 = 1$

• $n \text{ bits}: i_1 i_2 \cdots i_n$ $n \text{ qubits}: \sum_{i=0}^{2^n-1} \alpha_i |i\rangle \text{ with } \alpha_i \in \mathbb{C} \text{ such that } \sum_{i=0}^{2^n-1} |\alpha_i|^2 = 1$ Evolution of a quantum system : described by a unitary operator $U \in U_{2^n}(\mathbb{C})$.

Typical examples for a single qubit include :

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$$
$$T = \begin{bmatrix} 1 & 0\\ 0 & \exp(i\pi/4) \end{bmatrix}$$

$$H(\alpha |0\rangle + \beta |1\rangle) = \alpha(\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle) + \beta(\frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle)$$

Superposition allows quick multi-evaluation

Quantum measurements : set $\{M_m\}$ of measurement operators. m are the possible outcomes

$$\circ \ |\psi\rangle \longrightarrow \mathbb{P}(m) = ||M_m |\psi\rangle ||^2$$

$$\circ |\psi\rangle \longmapsto \frac{M_m |\psi\rangle}{\sqrt{\|M_m |\psi\rangle\|}}$$

In general : operators correspond to canonical basis

Example

For
$$|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

•
$$\mathbb{P}(0) = \mathbb{P}(1) = \frac{1}{2}$$

• If 0 measured then $|\psi\rangle = |0\rangle$

Example

- For $|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$
 - $\circ \mathbb{P}(0) = \mathbb{P}(1) = \frac{1}{2}$
 - $\circ~$ If 0 measured then $|\psi\rangle=|0\rangle$

For $|\psi\rangle = \frac{1}{2}(|00\rangle + |01\rangle) + \frac{1}{\sqrt{2}}|11\rangle$

- Measure the second register : $P(1) = \frac{1}{4} + \frac{1}{2} = \frac{3}{4}$
- $\circ~$ If 1 measured then $|\psi\rangle=\frac{1}{\sqrt{3}}\left|01\right\rangle+\frac{\sqrt{2}}{\sqrt{3}}\left|11\right\rangle$

Quantum superposition : allows fast computation by multi-evaluation.

Quantum superposition : allows fast computation by multi-evaluation.

$$U = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \text{ and } |\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |01\rangle) \text{ then applying } U \text{ gives}$$
$$\frac{1}{\sqrt{2}}(|10\rangle + |11\rangle)$$

Consider $f : \{0, 1\}^n \to \{0, 1\}^m$.

Assume there is a unitary transform

$$U_f: |x\rangle |y\rangle \longmapsto |x\rangle |y \oplus f(x)\rangle.$$

Consider $f : \{0, 1\}^n \to \{0, 1\}^m$.

Assume there is a unitary transform

$$U_f: |x\rangle |y\rangle \longmapsto |x\rangle |y \oplus f(x)\rangle.$$

$$\sum_{x} \alpha_x \left| x \right\rangle \left| 0 \right\rangle$$

Consider $f : \{0, 1\}^n \to \{0, 1\}^m$.

Assume there is a unitary transform

$$U_f: |x\rangle |y\rangle \longmapsto |x\rangle |y \oplus f(x)\rangle.$$

$$U_{f} \cdot \sum_{x} \alpha_{x} |x\rangle |0\rangle = \underbrace{\sum_{x} \alpha_{x} |x\rangle |f(x)\rangle}_{x}$$

all values f(x) are present

Consider $f : \{0, 1\}^n \to \{0, 1\}^m$.

Assume there is a unitary transform

$$U_f: |x\rangle |y\rangle \longmapsto |x\rangle |y \oplus f(x)\rangle.$$

$$U_f \cdot \sum_{x} \alpha_x |x\rangle |0\rangle = \underbrace{\sum_{x} \alpha_x |x\rangle |f(x)\rangle}_{\text{all values } f(x) \text{ are present}}$$

Problem : Find the desired information through measurement.

Our goal is to find *one* element within a set of size $N(=2^n)$.

Assume as well that we have access to an oracle \mathcal{O} , efficiently computable.

We will use two operators :

1.
$$U_{\mathcal{O}}: |x\rangle |y\rangle \mapsto |x\rangle |y \oplus \mathcal{O}(x)\rangle$$
. (Call to oracle)

2. $S: \sum_x \alpha_x |x\rangle \mapsto \sum_x (2\bar{\alpha} - \alpha_x) |x\rangle$. (Symmetry around mean of amplitudes)

When $|y\rangle = (|0\rangle - |1\rangle)/\sqrt{2}$, $U_{\mathcal{O}} \sum_{x} \alpha_{x} |x\rangle |y\rangle = \sum_{x} (-1)^{\mathcal{O}(x)} \alpha_{x} |x\rangle |y\rangle$

 ${\cal S}$ operates a symmetry around the average amplitude !

 ${\cal S}$ operates a symmetry around the average amplitude !

What happens when we apply $U_{\mathcal{O}}$ and S one after another ?

What happens when we apply $U_{\mathcal{O}}$ and S one after another ?

What happens when we apply $U_{\mathcal{O}}$ and S one after another ?

Amplification of amplitude !

What happens when we apply $U_{\mathcal{O}}$ and S one after another ?

Amplification of amplitude !

Need around \sqrt{N} iterations to retrieve the solution with a high enough probability.

There are **two** core ingredidents of Shor's algorithms :

1. the fast computation of a Quantum Fourier Transform (QFT);

2. the computation of the hidden period of a given function f.

Shor's algorithm

Computation of the QFT

First let us denote by ζ_N a *N*th root of unity, i.e. $\zeta_N = \exp 2i\pi/N$.

In the classical setting, we have the Discrete Fourier Transform :

$$DFT: (x_0,\ldots,x_{N-1})\mapsto (y_0,\ldots,y_{N-1})$$

with

$$y_k = \frac{1}{\sqrt{N}} \sum_{i=0}^{N-1} x_i \cdot \zeta_N^{-i \cdot k}.$$

Shor's algorithm

Computation of the QFT

First let us denote by ζ_N a *N*th root of unity, i.e. $\zeta_N = \exp 2i\pi/N$.

In the classical setting, we have the Discrete Fourier Transform :

$$DFT: (x_0,\ldots,x_{N-1}) \mapsto (y_0,\ldots,y_{N-1})$$

with

$$y_k = \frac{1}{\sqrt{N}} \sum_{i=0}^{N-1} x_i \cdot \zeta_N^{-i \cdot k}.$$

In the quantum setting, we have the Quantum Fourier Transform :

$$QFT: \sum_{i=0}^{N-1} x_i |i\rangle \mapsto \sum_{i=0}^{N-1} y_i |i\rangle$$

with

$$y_k = \frac{1}{\sqrt{N}} \sum_{i=0}^{N-1} x_i \cdot \zeta_N^{i \cdot k}.$$
Computation of the QFT

We can *factorise* the QFT :

$$QFT: \sum_{i=0}^{N-1} x_i \left| i \right\rangle \mapsto \frac{1}{\sqrt{N}} \bigotimes_{i=1}^n \left(\left| 0 \right\rangle + \zeta_N^{x \cdot 2^{n-i}} \left| 1 \right\rangle \right).$$

If we adopt the notation $[x_1,\cdots x_k] = \sum_{i=1}^k x_i \cdot 2^{-i}$, we also have :

$$QFT: \sum_{i=0}^{N-1} x_i |i\rangle \mapsto \frac{1}{\sqrt{N}} \bigotimes_{j=1}^n \left(|0\rangle + e^{2i\pi [x_{n-j+1}, \dots, x_n]} |1\rangle \right).$$

Computation of the QFT

We can *factorise* the QFT :

$$QFT: \sum_{i=0}^{N-1} x_i \left| i \right\rangle \mapsto \frac{1}{\sqrt{N}} \bigotimes_{i=1}^n \left(\left| 0 \right\rangle + \zeta_N^{x \cdot 2^{n-i}} \left| 1 \right\rangle \right).$$

If we adopt the notation $[x_1,\cdots x_k] = \sum_{i=1}^k x_i \cdot 2^{-i}$, we also have :

$$QFT: \sum_{i=0}^{N-1} x_i |i\rangle \mapsto \frac{1}{\sqrt{N}} \bigotimes_{j=1}^n \left(|0\rangle + e^{2i\pi [x_{n-j+1}, \dots, x_n]} |1\rangle \right).$$

This can be computed by successive application of rotation gates :

$$R_k = \begin{bmatrix} 1 & 0\\ 0 & \exp(2i\pi/2^k) \end{bmatrix}$$

Computation of the QFT

We can *factorise* the QFT :

$$QFT: \sum_{i=0}^{N-1} x_i \left| i \right\rangle \mapsto \frac{1}{\sqrt{N}} \bigotimes_{i=1}^n \left(\left| 0 \right\rangle + \zeta_N^{x \cdot 2^{n-i}} \left| 1 \right\rangle \right).$$

If we adopt the notation $[x_1,\cdots x_k] = \sum_{i=1}^k x_i \cdot 2^{-i}$, we also have :

$$QFT: \sum_{i=0}^{N-1} x_i |i\rangle \mapsto \frac{1}{\sqrt{N}} \bigotimes_{j=1}^n \left(|0\rangle + e^{2i\pi [x_{n-j+1}, \dots, x_n]} |1\rangle \right).$$

This can be computed by successive application of rotation gates :

$$R_k = \begin{bmatrix} 1 & 0\\ 0 & \exp(2i\pi/2^k) \end{bmatrix}$$

We obtain a circuit with $O(n^2)$ gates, where $N = 2^n$ i.e. $O(\log N)$ gates.

Computing a hidden period

We are given a r-periodic function f efficiently computable through U_f and we wish to recover r.

1. Prepare the state $|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{x} |x\rangle |0\rangle$.

2. Apply
$$f$$
 as $U_f |\psi\rangle = \frac{1}{\sqrt{N}} \sum_x |x\rangle |f(x)\rangle$.

- 3. Measure wrt to the 2nd register : $\frac{1}{\sqrt{N/r}}\sum_{k=0}^{N/r-1}|x_0+k\cdot r\rangle$ for a given x_0 .
- 4. Apply the QFT : $\frac{1}{\sqrt{r}} \sum_{j=0}^{r-1} \alpha_j |j \frac{N}{r} \rangle$.
- 5. Measure to obtain $jN/r \implies j/r$; if gcd(j,r) = 1 then r can be recovered efficiently.

Conclusion

This fast period-finding strategy can be applied to :

- factorise integers;
- solve the DLP;
- solve the phase estimation problem.

Conclusion

This fast period-finding strategy can be applied to :

- factorise integers;
- solve the DLP;
- solve the phase estimation problem.

There is more ! Generalisation of this approach can be used to solve classical number theoretical problems, such as :

- \circ the computation of (S-)units of a number field;
- determination of the class group;
- finding the generator of a principal ideal I = (g).

- Superposition : fast multi-evaluation
- Quantum Fourier Transform : detect period
 Almost all of exponential speed-ups
- Problem : Find desired result without structure
 Search algorithm : only quadratic speed-up

Euclidean lattices

Euclidean lattices

General context

Definition

We call *lattice* any discrete subgroup \mathcal{L} of \mathbb{R}^n where n is a positive integer.

- Any set B of free vectors which generates \mathcal{L} is called a basis.
- There are infinitely many bases.
- Some are better than others : orthogonality, short vectors

Shortest Vector Problem (SVP) : Find a shortest vector of $\mathcal{L} \setminus \{0\}$.

Note $\lambda_1(\mathcal{L})$ its norm.

Approximate Shortest Vector Problem (Approx-SVP) : Find a vector of \mathcal{L} with norm less than $\gamma \times \lambda_1(\mathcal{L})$.

Closest Vector Problem (CVP): Given ${\bf t}$ a target vector, find a vector of ${\cal L}$ closest to ${\bf t}$

Approximate Closest Vector Problem (Approx-CVP): Given t a target vector, find a vector of \mathcal{L} within distance $\gamma \times d(\mathbf{t}, \mathcal{L})$ of t

Approximate Closest Vector Problem (Approx-CVP): Given t a target vector, find a vector of \mathcal{L} within distance $\gamma \times d(\mathbf{t}, \mathcal{L})$ of t

Approximate Closest Vector Problem (Approx-CVP): Given t a target vector, find a vector of \mathcal{L} within distance $\gamma \times d(\mathbf{t}, \mathcal{L})$ of t

Approximate Closest Vector Problem (Approx-CVP): Given **t** a target vector, find a vector of \mathcal{L} within distance $\gamma \times d(\mathbf{t}, \mathcal{L})$ of **t**

Equivalently, find small $\mathbf{t}' \equiv \mathbf{t} mod \mathcal{L} o \textbf{reduction modulo } \mathcal{L}$

Guaranteed Distance Decoding (GDD): Given *any* vector **t** in span(\mathcal{L}), find $\mathbf{t}' \equiv \mathbf{t} \mod \mathcal{L}$ such that $\|\mathbf{t}'\| \leq \gamma \lambda_1(\mathcal{L})$.(knowing that it exists)

Reducing modulo a lattice

Fix $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ a basis of \mathcal{L} and $\mathbf{t} \in \mathbb{R} \cdot \mathbf{b}_1 \oplus \dots \oplus \mathbb{R} \cdot \mathbf{b}_n$.

Write $\mathbf{t} = \sum_{i=1}^{n} \mathbf{t}_i \cdot \mathbf{b}_i$, with $t_i \in \mathbb{R}$.

Two main algorithms used in practice :

Babai's round-off Output $\sum_{i=1}^{n} (\mathbf{t}_{i} - \lfloor \mathbf{t}_{i} \rceil) \cdot \mathbf{b}_{i};$

Ensure that the output is in $[-1/2, 1/2]^n \times \mathbf{B}$.

Babaï's nearest plane

Use the GSO $\tilde{\mathbf{B}}$ instead;

Ensure that the output is in $[-1/2, 1/2]^n \times \tilde{\mathbf{B}}$.

GGH-like schemes

Lattice-based cryptography : GGH-like schemes

PUBLIC KEY : a "bad" basis H, typically the HNF.

SECRET KEY : a "good" basis, which is a trapdoor for the problem.

ENCRYPTION : $\mathbf{c} = \text{Encrypt}(\mathbf{m}, \mathbf{H}) = s \cdot \mathbf{H} + \mathbf{m}$ where $s \in \mathbb{Z}^n$ and \mathbf{m} is short.

 $\mathsf{DECRYPTION}: \mathsf{Decrypt}(\mathbf{c}, \mathbf{B}) = \mathsf{Reduce}(\mathbf{c}, \mathbf{B}) \qquad \qquad \triangleright \mathsf{GDD} \mathsf{ solver}$

Assume that :

 $\circ \ \|\mathbf{m}\| < M;$ ightarrow bound on the message space

• $\|\texttt{Reduce}(\mathbf{t},\mathcal{L})\| < R$. o bound on the reduction capacity

If $R + M < \lambda_1(\mathcal{L})$ then $\text{Reduce}(\mathbf{c}, \mathcal{L}) = \mathbf{m}$.

Lattice-based cryptography : GGH-like schemes Digital signature

PUBLIC KEY : a "bad" basis **H**, typically the HNF.

SECRET KEY : a "good" basis **B**, which is the trapdoor of the problem.

 $\mathsf{SIGNATURE}: \mathbf{s} = \mathrm{Sign}(\mathbf{m}, \mathbf{B}) = \mathtt{Reduce}(\mathbf{m}, \mathbf{B}).$

VERIFICATION : s is short and $s - m \in \mathcal{L}$.

Problem: Babaï's algorithms leak the secret basis !

- GGH and original NTRUsign use Babaï's round-off;
- Works also on more complex structures (zonotopes);
- Works with more general distribution.

- $\circ \ \mathbb{E}[\mathbf{s} \cdot \mathbf{s}^T] = \mathbf{B} \cdot \mathbf{B}^T;$
- We can do as follows :
 - 1. compute an amproximation of $\mathbf{B} \cdot \mathbf{B}^{\mathsf{T}}$;
 - find an approximate secret vector with a gradient descent; draw

random vector and minimise the 4th

moment

 recover the secret vector with one of Babaï's algos.

Counter-measure : Draw from distribution independent of the secret basis : discrete gaussian as in [GPV08]

- $\circ \ \mathbb{E}[\mathbf{s} \cdot \mathbf{s}^T] = \mathbf{B} \cdot \mathbf{B}^T;$
- We can do as follows :
 - 1. compute an amproximation of $\mathbf{B} \cdot \mathbf{B}^{\mathsf{T}}$;
 - find an approximate secret vector with a gradient descent; draw

random vector and minimise the 4th

moment

 recover the secret vector with one of Babaï's algos.

Counter-measure : Draw from distribution independent of the secret basis : discrete gaussian as in [GPV08]

- $\circ \ \mathbb{E}[\mathbf{s} \cdot \mathbf{s}^T] = \mathbf{B} \cdot \mathbf{B}^T;$
- We can do as follows :
 - 1. compute an amproximation of $\mathbf{B} \cdot \mathbf{B}^{\mathsf{T}}$;
 - find an approximate secret vector with a gradient descent; draw

random vector and minimise the 4th

moment

 recover the secret vector with one of Babaï's algos.

Counter-measure : Draw from distribution independent of the secret basis : discrete gaussian as in [GPV08]

- $\circ \ \mathbb{E}[\mathbf{s} \cdot \mathbf{s}^T] = \mathbf{B} \cdot \mathbf{B}^T;$
- We can do as follows :
 - 1. compute an amproximation of $\mathbf{B} \cdot \mathbf{B}^{\mathsf{T}}$;
 - find an approximate secret vector with a gradient descent; draw

random vector and minimise the 4th

moment

 recover the secret vector with one of Babaï's algos.

Counter-measure : Draw from distribution independent of the secret basis : discrete gaussian as in [GPV08]

- $\circ \ \mathbb{E}[\mathbf{s} \cdot \mathbf{s}^T] = \mathbf{B} \cdot \mathbf{B}^T;$
- We can do as follows :
 - 1. compute an amproximation of $\mathbf{B} \cdot \mathbf{B}^{\mathsf{T}}$;
 - find an approximate secret vector with a gradient descent; draw

random vector and minimise the 4th

moment

 recover the secret vector with one of Babaï's algos.

Counter-measure : Draw from distribution independent of the secret basis : discrete gaussian as in [GPV08]

- $\circ \ \mathbb{E}[\mathbf{s} \cdot \mathbf{s}^T] = \mathbf{B} \cdot \mathbf{B}^T;$
- We can do as follows :
 - 1. compute an amproximation of $\mathbf{B} \cdot \mathbf{B}^{\mathsf{T}}$;
 - find an approximate secret vector with a gradient descent; draw

random vector and minimise the 4th

moment

 recover the secret vector with one of Babaï's algos.

Counter-measure : Draw from distribution independent of the secret basis : discrete gaussian as in [GPV08]

- $\circ \ \mathbb{E}[\mathbf{s} \cdot \mathbf{s}^T] = \mathbf{B} \cdot \mathbf{B}^T;$
- We can do as follows :
 - 1. compute an amproximation of $\mathbf{B} \cdot \mathbf{B}^{\mathsf{T}}$;
 - find an approximate secret vector with a gradient descent; draw

random vector and minimise the 4th

moment

 recover the secret vector with one of Babaï's algos.

Counter-measure : Draw from distribution independent of the secret basis : discrete gaussian as in [GPV08]

Recent lattice-based cryptography

Lattice-based cryptography¹

¹Freely taken from A. Roux-Langlois

Lattice-based cryptography

SIS and LWE : Two good average case problems

```
Short Integer Solution (SIS)

Fix q, n \in \mathbb{N}.

Input: A \stackrel{\mathcal{U}}{\leftarrow} M_n(\mathbb{Z}/q\mathbb{Z})

Goal: Find short s \in \mathbb{Z}^n \mid As = 0 \mod q
```

```
Learning With Error (LWE)

Fix q, n, m \in \mathbb{N}.

Input: (A, b = As + e),

where A \stackrel{\mathcal{U}}{\leftarrow} M_{m,n}(\mathbb{Z}/q\mathbb{Z}),

s \stackrel{\mathcal{D}s}{\leftarrow} (\mathbb{Z}/q\mathbb{Z})^n, e \stackrel{\mathcal{D}e}{\leftarrow} \mathbb{Z}^m

Goal: Find s.
```


Problem: Solve a system of m approximate equations in n variables modulo an integer q.

 $s_1 + 2s_2 + 4s_3 \approx 2 \bmod 5$

 $3s_1 + 4s_2 + 2s_3 \approx 1 \bmod 5$

 $s_2 + 2s_3 \approx 4 \mod 5$

 $2s_1 + 3s_3 \approx 2 \mod 5$

 $4\mathbf{s_1} + 2\mathbf{s_2} + 2\mathbf{s_3} \approx 3 \bmod 5$

More formally, we fix $n \ge 1$, $q \ge 2$ and $\alpha \in]0, 1[$.

Given $\mathbf{s} = [s_1, \dots, s_n] \in (\mathbb{Z}/q\mathbb{Z})^n$, we define a LWE sample to be :

 $\left(\mathbf{a}, \left(\mathbf{a} \mid \mathbf{s}\right) + e\right),$

where $\mathbf{a} \leftarrow U((\mathbb{Z}/q\mathbb{Z})^n)$ and $e \leftarrow D_{\mathbb{Z},\alpha q}$.

We will write $D_{n,q,\alpha}(\mathbf{s})$ the given distribution.

More formally, we fix $n \ge 1$, $q \ge 2$ and $\alpha \in]0, 1[$.

Given $\mathbf{s} = [s_1, \dots, s_n] \in (\mathbb{Z}/q\mathbb{Z})^n$, we define a LWE sample to be :

 $\left(\mathbf{a}, \left(\mathbf{a} \mid \mathbf{s}\right) + e\right),$

where $\mathbf{a} \leftarrow U((\mathbb{Z}/q\mathbb{Z})^n)$ and $e \leftarrow D_{\mathbb{Z},\alpha q}$.

We will write $D_{n,q,\alpha}(\mathbf{s})$ the given distribution.

The LWEⁿ_{α,q} problem then is :

Given m samples of $D_{n,q,\alpha}(\mathbf{s})$, retrieve s.

 $\circ A \leftarrow U\left(M_{m,n}(\mathbb{Z}/q\mathbb{Z})\right)$ $\circ s \leftarrow U\left((\mathbb{Z}/q\mathbb{Z})^n\right)$ $\circ e \leftarrow D_{\mathbb{Z}^m, \alpha q}$ short

s
Lattice-based cryptography

Structured variants of LWE

Lattice-based cryptography

Structured variants of LWE

Ring-LWE

Fix $q \in \mathbb{N}$, K a number field, $R_q = \mathcal{O}_K/(q)$

A Ring-LWE sample is (a, b = as + e), where $a \stackrel{\mathcal{U}}{\leftarrow} R_q$, $s \stackrel{\mathcal{D}_s}{\leftarrow} R_q$, $e \stackrel{\mathcal{D}_e}{\leftarrow} R$ Goal: Find s Think $K = \mathbb{Q}[X]/(X^n + 1)$ and $\mathcal{O}_K = \mathbb{Z}[X]/(X^n + 1)$ for $n = 2^k$.

Lattice-based cryptography Ring-LWE

Idea : Replace \mathbb{Z}^n by a polynomial ring !

Fix $q \in \mathbb{N}$, K a number field, $R_q = \mathcal{O}_K/(q)$.

Think $K = \mathbb{Q}[X]/(X^n + 1)$ and $\mathcal{O}_K = \mathbb{Z}[X]/(X^n + 1)$ for $n = 2^k$.

$$[a]: s \mapsto a \cdot s.$$

Lattice-based cryptography Ring-LWE

Idea : Replace \mathbb{Z}^n by a polynomial ring !

Fix $q \in \mathbb{N}$, K a number field, $R_q = \mathcal{O}_K/(q)$.

Think $K = \mathbb{Q}[X]/(X^n + 1)$ and $\mathcal{O}_K = \mathbb{Z}[X]/(X^n + 1)$ for $n = 2^k$.

$$[a]: s \mapsto a \cdot s.$$

Lattice-based cryptography Module-LWE

Idea : Replace $\mathbb Z$ by a polynomial ring !

Fix $q \in \mathbb{N}$, K a number field, $R_q = \mathcal{O}_K/(q)$.

Think $K = \mathbb{Q}[X]/(X^n + 1)$ and $\mathcal{O}_K = \mathbb{Z}[X]/(X^n + 1)$ for $n = 2^k$.

$$[a]: s \mapsto a \cdot s.$$

Lattice-based cryptography Module-LWE

Idea : Replace \mathbb{Z} by a polynomial ring !

Fix $q \in \mathbb{N}$, K a number field, $R_q = \mathcal{O}_K/(q)$.

Think $K = \mathbb{Q}[X]/(X^n + 1)$ and $\mathcal{O}_K = \mathbb{Z}[X]/(X^n + 1)$ for $n = 2^k$.

$$[a]: s \mapsto a \cdot s.$$

Lattice-based cryptography

Structured variants of LWE

Lattice-based cryptography

Structured variants of LWE

Number field $K \cong \mathbb{Q}[X]/(P(X))$

 $g \in K \iff$ pol. with rational coeffs

$$g \in K \iff (g_0, \dots, g_{n-1}) \in \mathbb{Q}^n$$

 $\theta \text{ root of } P(X) \leftrightarrow \sigma \text{ complex embedding}$

Minkowski (or canonical) embedding : $\sigma_K : g \in K \mapsto (\sigma(g))_{\sigma} = (g(\theta))_{\theta}$

$$\mathbb{Q}(\zeta_8) \cong \mathbb{Q}[X]/(X^4 + 1)$$

$$g = 1/2 + X + 3X^2 - 2X^3, g_i \in \mathbb{Q}$$

$$(1/2, 1, 3, -2) \in \mathbb{Q}^4$$

$$g \mapsto g(\zeta_8) = 1/2 + \zeta_8 + 3\zeta_8^2 - 2\zeta_8^3$$

$$g \mapsto g(\zeta_8) = 1/2 + \zeta_8^3 + 3\zeta_8^6 - 2\zeta_8^9$$

 $\begin{array}{l} \text{Ring of integers } \mathcal{O}_K \sim \mathbb{Z}[X]/(P(X)) \\ \quad (\text{Not true in general}) \\ g \in \mathcal{O}_K \iff \text{pol. with integral coeffs} \end{array}$

$$g \in \mathcal{O}_K \iff (g_0, \ldots, g_{n-1}) \in \mathbb{Z}^n$$

 $\mathbb{Z}(\zeta_8) \cong \mathbb{Z}[X]/(X^4 + 1)$ $g = 1 + X + 3X^2 - 2X^3, g_i \in \mathbb{Z}$ $(1, 1, 3, -2) \in \mathbb{Z}^4$

 $\mathbb{Z}(\zeta_8) \cong \mathbb{Z}[X]/(X^4 + 1)$ Ring of integers $\mathcal{O}_K \sim \mathbb{Z}[X]/(P(X))$ (Not true in general) $q = 1 + X + 3X^2 - 2X^3, q_i \in \mathbb{Z}$ $q \in \mathcal{O}_K \iff$ pol. with integral coeffs $(1, 1, 3, -2) \in \mathbb{Z}^4$ $q \in \mathcal{O}_K \iff (q_0, \ldots, q_{n-1}) \in \mathbb{Z}^n$ Ideal $I = (q, h) = q\mathcal{O}_K + h\mathcal{O}_K$ Principal ideal $I = (q) = q \mathcal{O}_K$ $\begin{vmatrix} 1 & 1 & 3 & -2 & \leftarrow g \\ 2 & 1 & 1 & 3 & \leftarrow gX \\ -3 & 2 & 1 & 1 & \leftarrow gX^2 \\ -1 & -3 & 2 & 1 & \leftarrow gX^3 \end{vmatrix}$ **Ideal lattice** : generated by coeffs of $qX^i, hX^j, i, j \in [1, n]$ or $\left(\sigma_K(gX^i)\right)_i$, $\left(\sigma_K(hX^j)\right)_i$

 $\mathbb{Z}(\zeta_8) \cong \mathbb{Z}[X]/(X^4 + 1)$ Ring of integers $\mathcal{O}_K \sim \mathbb{Z}[X]/(P(X))$ (Not true in general) $q = 1 + X + 3X^2 - 2X^3, q_i \in \mathbb{Z}$ $q \in \mathcal{O}_K \iff$ pol. with integral coeffs $(1, 1, 3, -2) \in \mathbb{Z}^4$ $q \in \mathcal{O}_K \iff (q_0, \ldots, q_{n-1}) \in \mathbb{Z}^n$ Ideal $I = (q, h) = q\mathcal{O}_K + h\mathcal{O}_K$ Principal ideal $I = (q) = q \mathcal{O}_K$ $\begin{vmatrix} 1 & 1 & 3 & -2 \\ 2 & 1 & 1 & 3 \\ -3 & 2 & 1 & 1 \\ -1 & -3 & 2 & 1 \\ \end{vmatrix} \leftarrow gX^{2}$ **Ideal lattice** : generated by coeffs of $qX^i, hX^j, i, j \in [1, n]$ or $\left(\sigma_K(gX^i)\right)_i$, $\left(\sigma_K(hX^j)\right)_i$

Polynomial structure \implies efficient for storage and computations

 SVP_γ is hard over general lattices

Approx-SVP over ideal lattices

SVP over principal ideals

Consider an intermediate problem.

Short Generator Principal Ideal Problem (SG-PIP):

Given a principal ideal I = (g) such that g is short, retrieve g.

²Log_K : $x \mapsto (\ln |\sigma_1(x)|, \dots, \ln |\sigma_n(x)|)$

Consider an intermediate problem.

Short Generator Principal Ideal Problem (SG-PIP):

Given a principal ideal I = (g) such that g is short, retrieve g.

- 1. Find a generator h = gu of $I (u \in \mathcal{O}_K^{\times})$ Can be done in polynomial time with a quantum computer
- **2.** Find g given h.

Use the Log-embedding² and the Log-unit lattice $\mathrm{Log}(\mathcal{O}_K^{\times})$

²Log_K : $x \mapsto (\ln |\sigma_1(x)|, \dots, \ln |\sigma_n(x)|)$

³Thanks to O. Bernard for the slide (particularly the tikz picture)

Let I be a challenge ideal.

1. Quantum decomposition Apply Log_K $\operatorname{Log}_K(h) = \operatorname{Log}_K(g) + \operatorname{Log}_K(u) \in$ $\operatorname{Log}_K(g) + \operatorname{Log}_K(\mathcal{O}_K^{\times})$

³Thanks to O. Bernard for the slide (particularly the tikz picture)

Let I be a challenge ideal.

1. Quantum decomposition Apply Log_K $\operatorname{Log}_K(h) = \operatorname{Log}_K(g) + \operatorname{Log}_K(u) \in$ $\operatorname{Log}_K(g) + \operatorname{Log}_K(\mathcal{O}_K^{\times})$

2. Short coset representative ?

³Thanks to O. Bernard for the slide (particularly the tikz picture)

Let I be a challenge ideal.

1. Quantum decomposition Apply Log_K $\operatorname{Log}_K(h) = \operatorname{Log}_K(g) + \operatorname{Log}_K(u) \in$ $\operatorname{Log}_K(g) + \operatorname{Log}_K(\mathcal{O}_K^{\times})$

2. Short coset representative ?

³Thanks to O. Bernard for the slide (particularly the tikz picture)

Let I be a challenge ideal.

1. Quantum decomposition Apply Log_K $\text{Log}_K(h) = \text{Log}_K(g) + \text{Log}_K(u) \in$ $\text{Log}_K(g) + \text{Log}_K(\mathcal{O}_K^{\times})$

2. Short coset representative ?

³Thanks to O. Bernard for the slide (particularly the tikz picture)

Let I be a challenge ideal.

- 1. Quantum decomposition Apply Log_K $\text{Log}_K(h) = \text{Log}_K(g) + \text{Log}_K(u) \in$ $\text{Log}_K(g) + \text{Log}_K(\mathcal{O}_K^{\times})$
- 2. Short coset representative ?
- 3. Hope this is short in I.

 $h = g \cdot u$ (h/u) = g

³Thanks to O. Bernard for the slide (particularly the tikz picture)

Existing works

- $\circ~[{\rm Cra+16}]$ quantum polynomial-time or classical $2^{n^{2/3+\epsilon}}$ -time algorithm to solve SG-PIP over cyclotomic fields
- [Bau+17] efficient classical algorithm to solve SG-PIP over multiquadratic fields. Good results in practice.

 \rightarrow of the form $\mathbb{Q}(\sqrt{m_1}, \ldots, \sqrt{m_r})$

Existing works

- $\circ~[{\rm Cra+16}]$ quantum polynomial-time or classical $2^{n^{2/3+\epsilon}}$ -time algorithm to solve SG-PIP over cyclotomic fields
- [Bau+17] efficient classical algorithm to solve SG-PIP over multiquadratic fields. Good results in practice.

 \rightarrow of the form $\mathbb{Q}(\sqrt{m_1}, \ldots, \sqrt{m_r})$

- ∘ [LPS20] Extend results of [Bau+17] to multicubic fields \rightarrow of the form $\mathbb{Q}(\sqrt[3]{m_1}, \dots, \sqrt[3]{m_r})$
- [LPS21] General real Kummer extensions
 - \rightarrow of the form $\mathbb{Q}(\sqrt[p]{m_1},\ldots,\sqrt[p]{m_r})$
 - \rightarrow fields of the form $\mathbb{Q}(\sqrt[p]{2},\sqrt[p]{3})$ seem to be more resistant

SVP of general ideals

General algorithms

Consider K a number field, I an ideal.

Fix S a set of prime ideals

(generating the class group.)

 ${}^{4}\mathrm{Log}_{K,S}: x \mapsto (\ln |\sigma_{1}(x)|, \dots, \ln |\sigma_{n}(x)|, -v_{\mathfrak{p}_{1}}(x)\ln \mathrm{N}_{K/\mathbb{Q}}(\mathfrak{p}_{1}), \dots, -v_{\mathfrak{p}_{r}}(x)\ln \mathrm{N}_{K/\mathbb{Q}}(\mathfrak{p}_{r}))$

SVP of general ideals

General algorithms

Consider K a number field, I an ideal.

Fix S a set of prime ideals

(generating the class group.)

- 1. Compute a S-generator of I, i.e. h s.t. $(h) = I \cdot \prod_{\mathfrak{p} \in S} \mathfrak{p}^{v_{\mathfrak{p}}}$
- 2. Reduce h, i.e. find $s \in \mathcal{O}_{K,S}^{\times}$ such that h/s is short.

 ${}^{4}\mathrm{Log}_{K,S}: x \mapsto (\ln |\sigma_{1}(x)|, \dots, \ln |\sigma_{n}(x)|, -v_{\mathfrak{p}_{1}}(x)\ln \mathrm{N}_{K/\mathbb{Q}}(\mathfrak{p}_{1}), \dots, -v_{\mathfrak{p}_{r}}(x)\ln \mathrm{N}_{K/\mathbb{Q}}(\mathfrak{p}_{r}))$

SVP of general ideals

General algorithms

Consider K a number field, I an ideal.

Fix S a set of prime ideals

(generating the class group.)

- 1. Compute a S-generator of I, i.e. h s.t. $(h) = I \cdot \prod_{\mathfrak{p} \in S} \mathfrak{p}^{v_{\mathfrak{p}}}$
- 2. Reduce h, i.e. find $s \in \mathcal{O}_{K,S}^{\times}$ such that h/s is short.

Two variants for step 2.

- 1. First reduce $\prod_{\mathfrak{p}} \mathfrak{p}^{v_{\mathfrak{p}}}$; then find a generator with the Log-embedding.
 - $\rightarrow~$ [CDW17] cyclotomic fields, subexponential approximation factor
- 2. Use the Log-S-embedding ⁴ to reduce everything.
 - \rightarrow [PHS19] all number fields, exponential preprocessing, subexponential approximation factor
 - \rightarrow [BR20] other def. of $\text{Log}_{K,S}$, same asymptotic results, good results in practice for cyclotomics up to dimensions 70.

 ${}^{4}\mathrm{Log}_{K,S}: x \mapsto (\ln |\sigma_{1}(x)|, \dots, \ln |\sigma_{n}(x)|, -v_{\mathfrak{p}_{1}}(x)\ln \mathrm{N}_{K/\mathbb{Q}}(\mathfrak{p}_{1}), \dots, -v_{\mathfrak{p}_{r}}(x)\ln \mathrm{N}_{K/\mathbb{Q}}(\mathfrak{p}_{r}))$

⁵Thanks to O. Bernard for the slide (particularly the tikz picture)

Let *I* be a challenge ideal.

1. Quantum decomposition output Apply Log

$$(h) = I \cdot \prod_{\mathfrak{p} \in S} \mathfrak{p}^v$$

⁵Thanks to O. Bernard for the slide (particularly the tikz picture)

Let *I* be a challenge ideal.

- 1. Quantum decomposition output Apply Log
- 2. Short coset representative ?

$$(h) = I \cdot \prod_{\mathfrak{p} \in S} \mathfrak{p}^v$$

⁵Thanks to O. Bernard for the slide (particularly the tikz picture)

Let *I* be a challenge ideal.

- 1. Quantum decomposition output Apply Log
- 2. Short coset representative ?

$$(h) = I \cdot \prod_{\mathfrak{p} \in S} \mathfrak{p}^v$$

⁵Thanks to O. Bernard for the slide (particularly the tikz picture)

Let *I* be a challenge ideal.

- 1. Quantum decomposition output Apply Log
- 2. Short coset representative ?

$$(h) = I \cdot \prod_{\mathfrak{p} \in S} \mathfrak{p}^{v}$$
$$(s) = \prod_{\mathfrak{p} \in S} \mathfrak{p}^{w}$$

⁵Thanks to O. Bernard for the slide (particularly the tikz picture)

Let *I* be a challenge ideal.

- 1. Quantum decomposition output Apply Log
- 2. Short coset representative ?
- 3. Hope this is short in I.

 $(h) = I \cdot \prod_{\mathfrak{p} \in S} \mathfrak{p}^{v}$ $(s) = \prod_{\mathfrak{p} \in S} \mathfrak{p}^{w}$

$$(h/s) = I \cdot \prod_{\mathfrak{p} \in S} \mathfrak{p}^{v-w}$$

⁵Thanks to O. Bernard for the slide (particularly the tikz picture)
Bernard, Lesavourey, Nguyen, Roux-Langlois (2022)

Approximate $Log(\mathcal{O}_{K,S}^{\times})$ over cyclotomic fields

Can we extend these good results to higher dimensions?

Two major obstructions for experiments :

- Decomposition $(h) = I \cdot \prod_{p \in S} p^{v_p}$ Group of *S*-units $(s) = \prod_{S \in S} p^{e_p}$

Bernard, Lesavourey, Nguyen, Roux-Langlois (2022)

Approximate $Log(\mathcal{O}_{K,S}^{\times})$ over cyclotomic fields

Can we extend these good results to higher dimensions?

Two major obstructions for experiments :

- Decomposition $(h) = I \cdot \prod_{\mathfrak{p} \in S} \mathfrak{p}^{v_{\mathfrak{p}}}$
- Group of S-units $(s) = \prod_{S \in S} \mathfrak{p}^{e_{\mathfrak{p}}}$

Use new results of Bernard and Kučera (2021) on Stickelberger ideal

- \circ Obtain explicit short basis of S_m
- It is constructive : the associated generators can be computed efficiently
- Free family of short S-units

Bernard, Lesavourey, Nguyen, Roux-Langlois (2022)

Approximate $Log(\mathcal{O}_{K,S}^{\times})$ over cyclotomic fields

Can we extend these good results to higher dimensions?

Two major obstructions for experiments :

- Decomposition $(h) = I \cdot \prod_{\mathfrak{p} \in S} \mathfrak{p}^{v_{\mathfrak{p}}}$
- Group of S-units $(s) = \prod_{S \in S} \mathfrak{p}^{e_{\mathfrak{p}}}$

Use new results of Bernard and Kučera (2021) on Stickelberger ideal

- \circ Obtain explicit short basis of S_m
- It is constructive : the associated generators can be computed efficiently
- Free family of short S-units

Allows us to *approximate* $Log(\mathcal{O}_{K,S}^{\times})$ with a full-rank sublattice

- Cyclotomic units
- Explicit Stickelberger generators
- Real $S \cap K_m^+$ -units \rightarrow only part sub-exponential; dimension n/2
- 2-saturation to reduce the index

Cyclotomic fields with almost all conductors, up to dimension 210.

Simulated targets in the Log-space. Randomised drift strategy.

⁶Code available at https://github.com/ob3rnard/Tw-Sti.

Cyclotomic fields with almost all conductors, up to dimension 210.

Simulated targets in the Log-space. Randomised drift strategy.

Cyclotomic fields with almost all conductors, up to dimension 210.

Simulated targets in the Log-space. Randomised drift strategy.

Cyclotomic fields with almost all conductors, up to dimension 210.

Simulated targets in the Log-space. Randomised drift strategy.

Cyclotomic fields with almost all conductors, up to dimension 210.

Simulated targets in the Log-space. Randomised drift strategy.

Conclusion

- 1. Upper-bounds on approx. factors reached by *S*-unit algorithms up to degree 210.
- 2. Twisted-PHS more efficient than CDW. (with simple CVP/BDD solver)
- 3. Twisted-PHS comparable to volumetic lower bound shown in [DPW19].

Conclusion

- 1. Upper-bounds on approx. factors reached by *S*-unit algorithms up to degree 210.
- 2. Twisted-PHS more efficient than CDW. (with simple CVP/BDD solver)
- 3. Twisted-PHS comparable to volumetic lower bound shown in [DPW19].

What does it mean for lattice-based cryptography?

- 1. One should consider PHS / Twisted-PHS to evaluate the security of Ideal-SVP. \rightarrow crossover point around n = 7000 in [DPW19], should be lower
- 2. Results not reassuring nor devastating.
- 3. Lattice-based crypto is safe (for now) : recall that it is based on Ring-LWE or Module-LWE.

What's next

- 1. Reduce the gap with Log-S-unit lattice.
 - \rightarrow requires big *p*-saturation
 - $\rightarrow\,$ In the works ! (Generalisation of Couveignes' and Thomé's algorithms for square-roots [BFL23])
- 2. Consider other number fields (Kummer for example).
- 3. Study the geometrical structure of the Log-S-unit lattice.
- 4. Work on other specific algorithms (basis reduction, enumeration)
 - ightarrow e.g. effective Module-LLL

Thank you for your attention

References I

[Bau+17] Jens Bauch et al. "Short Generators Without Quantum Computers: The Case of Multiquadratics". In: Advances in Cryptology – EUROCRYPT 2017. Ed. by Jean-Sébastien Coron and Jesper Buus Nielsen. Cham: Springer International Publishing, 2017, pp. 27–59. ISBN: 978-3-319-56620-7.

- [BFL23] Olivier Bernard, Pierre-Alain Fouque, and Andrea Lesavourey. Computing e-th roots in number fields. 2023. arXiv: 2305.17425 [math.NT].
- [BR20] Olivier Bernard and Adeline Roux-Langlois. "Twisted-PHS: Using the Product Formula to Solve Approx-SVP in Ideal Lattices". In: Advances in Cryptology – ASIACRYPT 2020. Ed. by Shiho Moriai and Huaxiong Wang. Cham: Springer International Publishing, 2020, pp. 349–380. ISBN: 978-3-030-64834-3.
- [CDW17] R. Cramer, L. Ducas, and B. Wesolowski. "Short Stickelberger Class Relations and Application to Ideal-SVP". In: *EUROCRYPT*. 2017.

References II

[Cra+16] Ronald Cramer et al. "Recovering Short Generators of Principal Ideals in Cyclotomic Rings". In: Advances in Cryptology – EUROCRYPT 2016. Ed. by Marc Fischlin and Jean-Sébastien Coron. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 559–585. ISBN: 978-3-662-49896-5.

[DPW19] Léo Ducas, Maxime Plançon, and Benjamin Wesolowski. "On the Shortness of Vectors to Be Found by the Ideal-SVP Quantum Algorithm". In: Advances in Cryptology – CRYPTO 2019. Ed. by Alexandra Boldyreva and Daniele Micciancio. Cham: Springer International Publishing, 2019, pp. 322–351. ISBN: 978-3-030-26948-7.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. "Trapdoors for hard lattices and new cryptographic constructions". In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing. Victoria, British Columbia, Canada: Association for Computing Machinery, 2008, pp. 197–206. ISBN: 9781605580470. DOI: 10.1145/1374376.1374407. URL: https://doi.org/10.1145/1374376.1374407.

References III

[LPS20] Andrea Lesavourey, Thomas Plantard, and Willy Susilo. "Short Principal Ideal Problem in multicubic fields". In: Journal of Mathematical Cryptology 14.1 (2020), pp. 359-392. DOI: https://doi.org/10.1515/jmc-2019-0028. URL: https: //www.degruyter.com/view/journals/jmc/14/1/articlep359.xml.

[LPS21] Andrea Lesavourey, Thomas Plantard, and Willy Susilo. On the Short Principal Ideal Problem over some real Kummer fields. Cryptology ePrint Archive, Report 2021/1623. https://ia.cr/2021/1623. 2021.

 [PHS19] Alice Pellet-Mary, Guillaume Hanrot, and Damien Stehlé.
"Approx-SVP in Ideal Lattices with Pre-processing". In: Advances in Cryptology – EUROCRYPT 2019. Ed. by Yuval Ishai and Vincent Rijmen. Cham: Springer International Publishing, 2019, pp. 685–716. ISBN: 978-3-030-17656-3.