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Abstract. Diagonally dominant lattices have already been used in cryp-
tography, notably in the GGH and DRS schemes. This paper further
studies the possibility of using diagonally dominant matrices in the con-
text of lattice-based cryptography. To this end we study geometrical and
algorithmic properties of lattices generated by such matrices. We prove
novel bounds for the first minimum and the covering radius with respect
to the max norm. Using these new results, we propose an decryption
failure free encryption scheme using diagonally dominant matrices. We
then propose solutions to patch the DRS signature scheme, in particular
using parameters leading to the use of sparse matrices.

Keywords: Diagonally dominance · Euclidean lattices · Algorithmic ·
Statistical attacks.

1 Introduction

1.1 Context and motivation

Diagonally dominant matrices. Diagonally dominant matrices have been an in-
teresting object of study for over a century, starting at least from the Lévy-
Desplanques theorem (1881) 1, with several links to general matrix theory with
research spanning up to today [29,12,52]. Numerous applications of diagonal
dominance can be found in various fields such as numerical linear algebra [36],
Markov chains, graphs Laplacians, perturbation theory2. On the other hand, lat-
tices generated by diagonally dominant matrices fitting the Lévy-Desplanques
theorem was not investigated. Such lattices seemed to have found some applica-
tion in cryptography on few specific instances [49,55] where in both papers the
focus was more in the matrix generation than a study of the resulting lattice.
On the other hand, when strict dominance is not required (i.e not fitting the
Lévy-Desplanques theorem), “large diagonals” saw some uses in cryptography
[30,40,50] as well as in modular arithmetic [6].

Euclidean lattices. The study of computational problems on lattices in general is
also an old and very studied topic [44,14,5]. Classical problems such as computing
a shortest vector – named the Shortest Vector Problem (SVP) – and computing
the closest lattice vector from a target vector – the Closest Vector Problem

1 A history of this theorem through the ages can be seen in [57]
2 [19] lists some applications.



(CVP) – can be proven to be NP-hard in the general case [1,39]. As a matter of
fact, relaxed version of these problems stay hard. Notably, even if we authorise
exponential preprocessing computations, the CVP is also NP-hard for small
approximation factors [3]. The hardness of these problems over Euclidean lattices
motivated cryptographers to consider them as building blocks for cryptographic
schemes [31,51], which led to extensive study of Euclidean lattices in the past
decades.

Lattice-based cryptography. The first example of schemes using Euclidean lat-
tices were using generic lattices and use a trapdoor one-way function whose
hardness to invert is based on the CVP. One can cite the Goldreich-Goldwasser-
Halevi (GGH) scheme [31] or constructions using the plain Learning With Er-
rors (LWE) problem such as Frodo [11]. Note that their security can also be
linked to the hardness of the SVP. For efficiency reasons one tends to consider
algebraic lattices, meaning lattices which can be described by means of polyno-
mial rings. Some of the noticeable constructions are NTRU [32] or the schemes
based on the Ring Learning With Errors (Ring-LWE) or the Module Learning
With Errors (Module-LWE) problems. Their security can be linked to the SVP
on the restricted classes of ideal lattices – also called the Ideal Shortest Vector
Problem (Ideal-SVP) – or module lattices – also called the Module Short-
est Vector Problem (Module-SVP). One may wonder whether the additional
algebraic structure can be used to solve the SVP more efficiently. Thus, the
study of the Ideal-SVP has gathered sustained attention in the past few years.
First it was shown that the intermediate problem of recovering short generators
of principal ideals can be solved in quantum polynomial time over cyclotomic
fields [15] and even classical polynomial time over multiquadratic [8] or mul-
ticubic fields [35]. Then Cramer, Ducas and Wesolowski extended the analysis
of [15] to the Ideal-SVP and showed that one could obtain a subexponential
approximation factor in quantum polynomial time [16]. With a slightly different
approach, this result can be generalized to all number fields provided an expo-
nential pre-processing phase [48], which might be an artifact of the proof if we
refer to experimental results obtained in [9,10]. Thus the Ideal-SVP seems to be
strictly weaker than the SVP. Even though the Ring-LWE or Module-LWE
problems are harder than the Ideal-SVP, there is no guarantee that algebraic
attacks mentioned previously cannot be used to tackle them.

Thus, studying other types of trapdoors or constructions is still an interesting
and important research direction, recently explored in [26] or [22,24] for example.

Digital signatures with lattices. In order to build digital signatures schemes with
lattices, one can follow the hash-then-sign paradigm. In this setting, the hash
of the message H(m) is a random vector of the space and a valid signature is
then a lattice vector close to H(m). The security of the scheme is guaranteed
as soon as solving the CVP is hard. The original GGH and NTRU signature
schemes were originally following a naive version of this paradigm, using the so-
called Babai round-off algorithm to produce the signature. However Nguyen and
Regev successfully used the observation that the difference between the message
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and a valid signature lie within the fundamental parallelepiped of the secret basis
to recover the latter [45]. Ducas and Nguyen showed that this statistical attack
could be extended to more complex structures than bases which allowed them to
break potential counter-measures in practice [21]. The same kind of attack [37]
has recently been applied to break the Peregrine signature scheme [53].

In order to prevent the attack, Plantard, Win and Susilo [50] described how
to produce a hash-then-sign scheme based on the max norm in the hope that
the signatures lie in a space independent of the secret basis. Their work rely on
matrices of the form B = D + N where D and N are such that the spectral
radius ρ(D−1 ·N) < 1. Then this work has been adapted for DRS, a candidate of
the first round of the NIST call for standardization [49], relying on the fact that
the matrices used as lattice bases are diagonally dominant. This allows the γ-
Guaranteed Distance Decoding (GDDγ) to be solved with an algorithm adapted
from [50]. This scheme has known a learning attack by Ducas and Yu [23]. One
has to note that this attack differs from the previous ones and that it does not
break completely the second version of the scheme [56]. However, it remains a
serious attack with around 30 bits of security loss for the first set of parameters,
using 230 signatures only.

1.2 Our Contributions

This work is composed of three parts.

1. In Section 3 we improve our theoretical knowledge of diagonally dominant
lattices by giving two new bounds on the key lattice invariants in the context
of cryptography for the max norm, one for the covering radius and one for
the first minimum.

More precisely, we start by giving a lower bound on the size of the short-
est vector in infinity norm. Guessing the size of the shortest vector or even
an approximation is known to be NP-hard [18], thus we believe providing a
tighter upper bound for any specific family of lattices is an interesting result
in itself. Then we give an improved study of the reduction algorithm of [50]
for diagonally dominant matrices and prove a stronger reduction capability
than previously proven for such lattices [55]. We also prove that our afore-
mentioned algorithms operate at most a polynomial (in the dimension and
the size of its entries) amount of vector additions or multiplications by a
scalar. Consequently, both results give novel upper and lower bounds on the
size of the covering radius for such lattices

2. Secondly, using this new results, we are able to provide a decryption fail-
ure free cryptosystem relying on diagonally dominant matrices. It follows
a framework close the GGH encryption schemes [31,7]. We discuss formal
security and the steps to take towards IND-CCA security, using standard
techniques or transformations [28,17]. We also evaluate the practical security
of the scheme using common cryptanalytic techniques to assess lattice-based
constructions. We show that it is asymptotically secure.
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3. Finally, following a tighter cryptanalysis, we explore a modification of the
DRS scheme using sparse matrices. We notably look into the impact of Ducas
and Yu’s statistical attack [23]. Our experiments tend to show that these new
parameters greatly mitigate the impact of the leak.

Conclusion. We deem that the asymptotical security of GGH-like schemed using
diagonally dominant matrices can be achieved, however our work tends to show
that the practical security at a level comparable to other schemes like Squirrels
or Hawk [24] is difficult to achieve for suitable dimensions. Thus, we deem that
trying to achieve such a goal is still an interesting and challenging research
direction. Another option that we plan to explore is to use the good decoding
properties of such matrices in other framework such as the Lattice Isomorphism
Problem [22].

2 Background

We assume the readers know what is the set of integers Z, the set of integral
matrices with n rows and m columns Mn,m(Z), the determinant, norms and
other basics of linear algebra. Given a matrix B, we will denote by Bi its ith
row vector. We refer readers to [41,42] for a more complete background of lattice
theory.

Definition 1 (Lattice).
We define an integral lattice L as a subgroup of Zn. A basis B of an integral
lattice L is a basis of L as a Z-module, and denote by L(B) the lattice generated
by the rows of a basis B. We write the volume (or determinant) of the lattice
and compute it as det(L) =

√
det(B ·BT ).

While an integral lattice can potentially have an infinity of basis, a lattice
only admits an unique basis in Hermite Normal Form (HNF).

Definition 2 (HNF).
Let L be a full-rank integral lattice of dimension n and H ∈ Mn,n(Z) a basis of
L. Then H is said to be in HNF if, and only if,

∀1 ≤ i, j ≤ d, Hi,j


= 0 if i > j

≥ 0 if i ≤ j

< Hj,j if i < j

In this paper we only consider full-rank integral lattices.
Lattices have some important invariant with strong computational property.

Definition 3 (Minima of a lattice). We denote by λ
(l)
k (L) the smallest value

r such that a ball centered in zero and of radius r in norm l contains k linearly
independent vectors of L.
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Definition 4 (Covering radius). Given a lattice L, we define its covering
radius µ(l)(L) as the smallest value such that for any x ∈ Rn, there exists v ∈ L
such that ∥x− v∥l < µ(l)(L).

There is some relation between all those invariants. For example, for any

lattice 1
2λ

(2)
1 (L) ≤ µ(2)(L) ≤

√
n
2 λ

(2)
n (L) (See [41]).

While many computational problems on lattices exist, we define only the
lattice problems useful for the comprehension of the paper.

Definition 5 (Approximate Shortest Vector Problem (SVPγ)). Given a
basis of a lattice L of dimension n and an approximation factor γ ∈ R+, find
v ∈ L \ {0} such that ∥v V ert ⩽ γ · λ1(L).

Definition 6 (Approximate Closest Vector Problem (CVPγ)). Given a
basis of a lattice L of dimension n, a target vector t ∈ Rn and an approximation
factor γ ∈ R+, find v ∈ L such that ∀w ∈ L, ∥t− v∥ ≤ γ · ∥t−w∥.

The first minimum λ
(l)
1 (L) and the covering radius µ(l)(L) offers some nat-

ural bounds which transform the generic problem CVP in some useful variant,
especially for cryptographic applications.

Definition 7 (GDDγ). Given a lattice L, and a bound γ ≥ 1, for any target
t ∈ Rn find a lattice vector v ∈ L such that ∥t− v∥ < γ · µ(l)(L).

There exists another variant of CVP; if the first variant, GDDγ , is key for
lattice based signature scheme, the second variant, Bounded Distance Decoding
(BDD), us key for lattice based encryption scheme.

Definition 8 (BDD). Given a lattice L, and a bound α ≤ 1, for any target

t ∈ Rn such there exist a vector v ∈ L with ∥t− v∥ < α · λ(l)
1 (L), find v.

Those problems are usually tackled with the combination of a “good” basis,
e.g. LLL-reduced [34] or BKZ-reduced [13], together with an appropriate algo-
rithm such as Babai’s round-off or nearest plane algorithms [5]. For example,
that is the approach proposed by Klein [33] for solving BDD for some α.

Remark 1. Note that a CVPγ algorithm can be used as a GDDγ solver as long
as the approximation factor γ ensures that any target has a solution. Remark also
that solving the GDDγ is equivalent to computing a short coset representative
of t mod L. We will often consider algorithms solving this “short coset repre-
sentative” problem, that we will call reduction algorithms and write Reduce for
a generic algorithm. In this context the approximation factor γ of Definition 7
will be called the reduction radius.

In this paper, we consider a specific family of “good” lattice bases, allowing
us to tackle the above problems more easily. Thus, we can use them as secret
trapdoors for cryptographic constructions.
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Definition 9 (Diagonally Dominant Matrix). Let a matrix B ∈ Mn(Z),
we write δi(B),

δi(B) = Bi,i −
n∑

j=1
i̸=j

|Bi,j |

and we will call B diagonally dominant if, and only if,

∀i ∈ J1, nK, δi(B) > 0.

Furthermore, we will call dominance level the quantity ∆(B)
def
= min δi(B).

It follows from the Lévy-Desplanques theorem that a diagonally dominant
matrix is always full-rank.

For clarity reasons, we will mainly consider diagonally dominant matrices of
the form B = D · Idn +N for some fixed D ∈ Z and such that for any i ∈ J1, nK,
Ni,i = 0 3. Then, we will call noise level the value ν(B)

def
= maxi∈J1,nK ∥Ni∥1.

3 Results on fundamental values for diagonally dominant
lattices

In this section we analyze diagonally dominant lattices with respect to the max
norm. We improve our knowledge on both the covering radius and the first
minimum which are cryptographically relevant lattice invariants. We present
those results in Theorem 1 and Theorem 2. Moreover we show that the bound
for the covering radius for matrices with negative noise N can be lowered, but
we push back this result in Appendix A for clarity purposes.

3.1 Tighter bound on Diagonally Dominant Lattice Covering
Radius

The results proven in this section will prove the following theorem.

Theorem 1. Consider B ∈ Mn(Z) a diagonally dominant matrix and L =
L(B). There is an algorithm PSW (Alg. 1) such that for any vector v ∈ Rn, it
returns in polynomial time a vector w respecting

w ≡ v mod L, ∥w∥∞ ⩽ D − ∆(B)

2

i.e.

µ(∞)(L) ⩽ D − ∆(B)

2
.

3 Note however that our results and their proofs can be adapted to the case where B =
D+N with D a general diagonal matrix and N has non-zero diagonal coefficients.
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The proof of this theorem is done by proving an upper bound on the conver-
gence radius of a reduction algorithm which we will prove to terminate within a
polynomial number of arithmetic operations.

The PSW reduction algorithm was first introduced in [50] and is a known
approximation of Babäı’s Round-off algorithm [5] in the case of matrices of the
form D−N where N ·D−1 have a spectral radius lower than 1. It was then used
a second time in cryptography [49] within the DRS scheme. The algorithm was
proven to finish for with ∥w∥∞ < D in [49], but did not take into account the
leeway ∆(B) A slight modification of the reduction proof given in [55] gives us
a tighter bound by changing the loop condition in line 2 of the algorithm to a
comparison with a value Ri ⩾ D− δ(B, i)/2 for every index i. This gives us the
modified version, described in Algorithm 1.

Algorithm 1 PSW reduction

Require: v ∈ Rn,B a diagonally dominant matrix, a bound vector R ∈ Nn.
Ensure: w ≡ v mod L(B) and ∀i ∈ J1, nK,wi < Ri.
1: w← v
2: while

∨n
j=1(|wj | > Rj) do

3: i← any index such that |wi| > Ri

4: if |wi| ⩾ D then
5: q ← sign(wi) · ⌊|wi| /D⌋
6: else
7: q ← sign(wi)
8: end if
9: w← w − q ·Bi {Reduce |wi|}
10: end while
11: return w

Correctness. The following lemma states that for a given R, the algorithm ter-
minates given that values Ri are above a certain bound which varies for each
index.

Lemma 1 (Tighther bound in PSW-reduction algorithm). For input v ∈
Zn, a diagonally dominant matrix B and R ∈ Rn

+ such that ∀i ∈ J1, nK, Ri ⩾
D−δi(B)/2, the PSW reduction (alg. 1) terminates and outputs w ≡ v mod L(B)
where ∀i, |wi| ≤ Ri.

Proof. Let S(v, R)
def
= {i ∈ J1, nK | |vi| > Ri} and f be the function defined

on Zn × J1, nK by f : (w, i) 7→ w − sign(wi) ·
⌊
wi

D

⌋
· Bi. In order to show that

Algorithm 1 ends and outputs a correct vector, we will prove the following:

n∨
j=1

(|wj | > Rj) =⇒ ∀i ∈ S(w, R), ∥f(w, i)∥1 < ∥w∥1. (1)
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First remark that if the left side of (1) is verified, then f modifies w. Now
let us show that (1) is true. First assume that there exists i ∈ S(w, R) such
that |wi| > D. Then f(w, i)i has the same sign than wi, therefore |f(w, i)i| =
|wi| − ⌊|wi| /D⌋ ·D. Moreover we have

∀j ∈ J1, nK \ {i}, |wj | ⩽ |wj |+
⌊
|wi|
D

⌋
· |Bi,j |,

which gives

∥f(w, i)∥1 ⩽ |f(w, i)i|+
n∑

j=1
j ̸=i

|f(w, i)j | ⩽ |wi|−
⌊
|wi|
D

⌋
·D+

n∑
j=1
j ̸=i

|wj |+
⌊
|wi|
D

⌋
·|Bi,j |.

This leads to

∥f(w, i)∥1 ⩽ ∥w∥1 +
⌊
|wi|
D

⌋
· δi(B) ⩽ ∥w∥1 −

⌊
|wi|
D

⌋
· δi(B) < ∥w∥1.

Now consider i ∈ S(w, R) such that |wi| < D. Then the signs of wi and f(w, i)i
are different. Moreover if we write |wi| = Ri + t with t ∈ J1, D−RiJ, we obtain
|f(w, i)i| = |Ri −D + t| = D −Ri − t. Therefore we have

|f(w, i)i| = |wi| − 2(Ri + t) +D.

Following the same reasoning as before to bound ∥f(w, i)∥1, we have

∥f(w, i)∥1 ⩽ ∥w∥1 − 2(Ri + t) +D +D − δi(B)

and noting that Ri ⩾ D − δi(B)/2 we obtain

∥f(w, i)∥1 ⩽ ∥w∥1 − 2(Ri + t) + 2Ri < ∥w∥1.

⊓⊔

Algorithm 1 uses a linear memory and does not need to store much more
than the size of the target and the matrix. This is an advantage compared to
Babäı’s nearest plane algorithm which needs the GSO or Babäı’s rounding-off
algorithm which requires a matrix inverse. Moreover all computations can be
carried out with simple integral arithmetic.

Worst-case complexity. The average-case time-complexity of Algorithm 1 was
briefly experimented in [50], however a proper worst-case analysis was not pro-
vided and does not seem to have been done in the literature.

Lemma 2. Let B ∈ Mn(Z) be a diagonally dominant matrix and v ∈ Zn, and
denote by b the value 2nD

2nD−∆(B)) . An upper bound on the complexity of vector

operations done by Algorithm 1 is in

O

(
logb

(
∥v∥1
nD

)
+

nD

2

)
.
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Proof. Let us consider the reduction of ∥w∥1 to count the number of reduction
steps, using the results and the reasoning of Lemma 1.

First assume ∥w∥1 > nD which guarantees ∥w∥∞ > D. Thus the coefficient q
is greater 1. Denote byw′ the value of the vector after the update in Algorithm 1.
Then ∥w∥1 is updated as

∥w′∥1 ⩽ ∥w∥1 − q ·∆(B).

From ∥w∥∞ ⩽ ∥w∥1 ⩽ n∥w∥∞ we obtain q ⩾ ∥w∥1

2nD . Thus we get

∥w′∥1 ≤ ∥w∥1 −
∥w∥1
2nD

·∆(B) = ∥w∥1 ·
(
2nD −∆(B)

2nD

)
.

If we use this inequality and we write k the number of steps necessary to reach the
condition ∥w∥1 ⩽ nD, i.e to reach the second case, using the worst assumptions
we obtain:

∥w∥1 =

(
2nD −∆(B)

2nD

)k

· ∥v∥1 ⩽ nD.

This gives a O
(
logb

(
∥v∥1

2nD

))
number of vectors operations to reach ∥w∥1 ⩽ nD.

We can now focus on the case ∥w∥1 ⩽ nD. Note that ∥w∥1 ⩽ nD still do not
give us much information about ∥w∥∞, so we continue our analysis using ∥w∥1.
We proceed by counting the least untactful possible reduction of ∥w∥1 ⩽ nD
per step until ∥w∥1 = 0: each step reduces ∥w∥1 of at least 2t (2 with t = 1).

Therefore, we upper-bound the amount of loop iterations left by ∥w∥1

2 ⩽ nD
2 . ⊓⊔

By approximating log(b) = − log(1 − ∆/2nD) ≈ ∆(B)/2nD and setting
∥v∥1 = nDn (i.e each coefficient to an approximate of the determinant), we can
obtain the simpler formula ignoring constants:

O

(
n2D

log(D)

∆(B)

)
In addition, if we set D = n and ∆(B) = 1 as in the different versions of the
DRS scheme [49,55,56], we obtain O(n3 log n).

Remark 2. This complexity bound obtained in Lemma 2 is not tight and does not
reflect at all the significantly faster experimental results reported in [50,55,49],
which is understandable: the probability to trigger a single least-impactful iter-
ation is 2−(n−1), i.e as probable as solving a {0, 1}-knapsack problem with n− 1
entries randomly. However, our result still proves polynomial operation complex-
ity and constant memory (besides input memory) as far as vector operations (i.e.
fixed dimension) are concerned.

3.2 Result on Diagonally Dominant Lattice First Minimum

The importance of ∆(B) for the quality of the lattice have been exposed in the
previous section. In this section, we present a second result linking once again
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∆(B) with an invariant of the lattice. However, this time we are able to bound
the first minima of the lattice. This is the first result in this direction which
alleviate the complexity of using diagonally dominant matrix for encryption,
especially if one wants to avoid any probability of decryption failure.

Theorem 2. Let B ∈ Mn(Z) be a diagonally dominant matrix with diagonal

D. Then λ
(∞)
1 (L(B)) ⩾ ∆(B).

Proof. Consider l ∈ Zn and write v = l ·B. Then write l′ = (|li|)i∈J1,nK. There
exists B′ ∈ Mn(Z) a matrix such that |B′

i,j | = |Bi,j | for any pair (i, j) ∈ J1, nK2,
and for all i ∈ J1, nK,B′

i,i = D and vi = ±(l′ · B′)i. Thus B′ is a diagonally
dominant matrix such that δi(B

′) = δi(B) for all i ∈ J1, nK. Now let us show
that ∥v∥∞ ⩾ ∆(B). We will first bound the taxicab norm then use the classic
norm inequality

∥v∥∞ ⩽ ∥v∥1 ⩽ n∥v∥∞. (2)

First remark that we have the following:

∥v∥1 =

n∑
j=1

|(l′ ·B′)j | ⩾

∣∣∣∣∣∣
n∑

j=1

n∑
i=1

l′i ·B′
i,j

∣∣∣∣∣∣ =
∣∣∣∣∣∣

n∑
i=1

l′i

n∑
j=1

B′
i,j

∣∣∣∣∣∣ .
Moreover for any i ∈ J1, nK, l′i ⩾ 0 and

∑n
j=1 B

′
i,j ⩾ δi(B) > 0, so we have∣∣∣∣∣∣

n∑
i=1

l′i

n∑
j=1

B′
i,j

∣∣∣∣∣∣ =
n∑

i=1

l′i

n∑
j=1

B′
i,j ⩾

n∑
i=1

l′i · δi(B).

Therefore, if k = |{i ∈ J1, nK | li ̸= 0}| we obtain ∥v∥1 ⩾ k ·∆(B).
If k = n then Equation (2) gives

∥v∥∞ ⩾ ∆(B).

Now consider the case with k < n. Without any loss of generality, assume ∀i ∈
J1, kK, li ̸= 0. Denote by l′′ the tuple (l′1, . . . , l

′
k) and B′′ the top left k × k

submatrix of B′. Then B′′ is diagonally dominant and ∀i ∈ J1, kK, δi(B′′) ⩾
δi(B

′) = δi(B). We have

∀i ∈ J1, kK, (l ·B)i = (l′ ·B′)i = (l′′ ·B′′)i.

Then, since |{i ∈ J1, kK | l′′i ̸= 0}| = k, we can apply the previous result to l′′ and
B′′, therefore ∥l′′ ·B′′∥∞ ⩾ ∆(B′′) and ∃i0 ∈ J1, kK, |(l′′ · B′′)i0 | = ∥l′′ ·B′′∥∞.
Finally we get

|(l ·B)i0 | = |(l′ ·B′)i0 | = |(l′′ ·B′′)i0 | ⩾ ∆(B′′) ⩾ ∆(B′) = ∆(B).

⊓⊔
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4 Diagonally Dominant Matrix Encryption

In this section we will describe an encryption scheme using diagonally dominant
matrices, the we call DRE as a callback to DRS. First we describe in Section 4.1
the general framework of our construction based on a GDDγ solver. We provide
conditions on the matrices used as private keys to ensure the correctness of the
scheme within this framework in Section 4.2. To this end we use the results on
λ
(∞)
1 and µ(∞) proven in Section 3 and summed-up in Theorem 1. Then we give

an instantiation of this general framework in Section 4.3 and discuss security
in Sections 4.4 and 4.5.

4.1 General framework

Let us now describe the framework for the encryption scheme we are considering.
As mentioned previously, it is based on the max norm l∞. We fix as parameters
(D,n,M) ∈ N2. Let us denote L the lattice generated by a diagonally dominant
matrix B = D · Idn + N. Let R be the radius in which we can find for any
c ∈ Zn a vector m ≡ c ∈ L s.t. ∥m∥∞ < R. Algorithms 1 and 3 offers us
parametrisable radii R directly from a parametrisable B. Evidently, B is kept
as a secret trapdoor as it allows for decryption. Let M be the upper bound of
the max norm of the vector messages we wish to recover, such that if the vectors
associated to the valid messages belong to a set M, then M ⊆ [−M,M ]n.
Here, we consider that each message is associated to a vector m ∈ Zn we wish
to recover, and that the encryption of m is associated to a ciphertext vector
c = m+ v where v ∈ L(B). In summary we consider the following framework:

– The secret key SK = B ∈ Mn(Z) is a diagonally dominant matrix with
diagonal coefficient D, and the public key PK is H = HNF(B).

– The message space is M ⊆ J−M,MKn.
– The encryption function will be Encrypt(m,PK) = s ·H+m, with s ∈ Zn.
– The decryption function will be Decrypt(c,SK) = Reduce(c,B), where

Reduce is a GDDγ solver. Its convergence radius will be denoted by R.

4.2 Guaranteeing decryption of valid messages (i.e. correctness)

In order to obtain a correct scheme we need to determine parameters ensuring
the correctness of the decryption. The first condition that they need to satisfy
is M ⩽ R so that Reduce(c,B) is indeed a valid message. Then one needs to
ensure unicity, meaning Reduce(Encrypt(m,PK)) = m. This is satisfied as soon
as

R+M ⩽ λ
(∞)
1 (L). (3)

In particular for diagonally dominant matrices, we can use Algorithm 1 for
Reduce and Theorem 1 ensures that Equation (3) can be simply satisfied for B
such that

∆(B) >
2

3
(D +M), (4)
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which are straightforward to construct.
If we focus on matrices with negative noise only, then we can obtain larger

bounds. Indeed, in this case R = D/2 so (3) becomes λ∞
1 (L) ⩾ D/2 +M which

gives ∆(B) > D/2 +M .
Thus, we could use smaller dominance levels for a fixed M or larger message

spaces for the same value ∆(B).

4.3 Instantiation of the encryption scheme

To instantiate our encryption scheme, we first need to fix some public parameters
as the diagonal coefficient D and the dimension n. We assume the message space
is composed of vectors over M = {−1, 0, 1}n, but we showed earlier that could
also be subject to change. From an external point of view, our scheme is is close
to knapsack problem, such as the first proposition of Merkle-Hellman [38]. The
major difference is within the setup and the decryption, which are details that
are hidden to the messages senders.

DRE-Setup(D, n)

∆(B)← 2(D + 1)/3

H← 0

while IsNotPerfect(H)

B← RDDgen(D,n,∆(B))

H← HNF(B)

P ← PreComp(PK ,SK)

h← H[1..n, n]

return (PK = h,SK = B,P)

DRE-Encrypt(m, PK)

c← 0

for i ∈ [1, n− 1]

c← c−mi · hi

c← (c+mn) mod hn

return c

DRE-Decrypt(c, SK , P)

∆(B)← 2(D + 1)/3

R← D −∆(B)/2 · [1, . . . , 1]
m← UsePreComp(c,P)
m← RSR(m,B, R)

return m

Fig. 1: DRE Algorithms

We present above a high-level description of the instantiated encryption
scheme in figure 1. The notations for the figure are the following:

– (D,n, c) ∈ N3 are respectively the diagonal value, dimension and ciphertext.
– H,B ∈ Zn×n, and P is rectangular but has n columns.
– IsNotPerfect outputs TRUE anytime the input is not a perfect HNF.
– PreComp takes the secret key and precompute a set of vectors that are re-

duction of large integers in the last coefficient.
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– UsePreComp uses the above to output a vector of smaller integers that is a
reduction of an input large integer as a last vector coefficient.

Note that PreComp and UsePreComp are completely unnecessary from a theoret-
ical perspective, however we use them in our simple proof-of-concept implemen-
tation to avoid large waiting times (to verify our concept works in practice), and
we thus believe they are worth mentioning. We give below a bit more detailed
description of the whole scheme:

Setup. For the secret key, we generate a diagonally dominant matrix with our
chosen parameters (D,n). Since the message space is J−1, 1Kn, following Equa-
tion (4), we will fix ∆(B) = 2

3 (D+1). For the public key, we compute the HNF
of the secret key, hoping it has perfect form, i.e. L(B) is a co-cyclic lattice. If
not then we discard B and retry.4. The public key is then H = HNF(B) but since
it holds a perfect form, only its unique dense column vector h needs to be sent.
We also use perform precomputations to ease future decryptions, but in theory
this is not needed.

Encryption. For the encryption, we just perform a Gaussian Elimination on m
using the matrix H. Because the public key PK = h was enforced to be the last
column of a perfect HNF H, the output of DRE-Encrypt in figure 1 is the last
coefficient of a vector of the form [0, . . . , 0, c] = m+v with v ∈ L(B). Indeed, if
one reduces the vector m with H, as follows

m1 . . . . . . mn−1 mn

1 0 . . . 0 h1

0 1
. . .

...
...

...
. . .

. . . 0
...

0 . . . 0 1 hn−1

0 . . . . . . 0 det(B)


,

using the first n− 1 rows of H, the first vector will be transformed into

[0, . . . , 0,mn −
n−1∑
i=1

mihi] = m−m ·H+mn · [0, . . . , 0,det(B)].

Note that this approach is very similar to the one chose in the Squirrels
scheme [26] recently submitted to the NIST call for proposals for quantum-
resistant digital signature algorithms [47], and maybe also several HNF-based
encryption schemes since [40].

Decryption. We use the reduction algorithms we presented in this paper, which
we proved to terminate. Note that in our proof-of-concept implementation, we
used precomputations to avoid large integers and save time.

4 Or use a permutation to attempt obtaining a perfect HNF as reported in [54].
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4.4 Formal security

The scheme defined by the algorithms presented in Figure 1 is guaranteed to be
correct but is not secure. Since it is deterministic, it is not even IND-CPA. In
the following, we discuss the necessary milestones to reach in the path towards
IND-CCA security. Note that, for example, the key encapsulation mechanism
Bat [27] follows essentially the same steps.

One-wayness. The first level of security to achieve is one-wayness, i.e. that one
cannot recover a message m given only the public key PK and a random cipher-
text c = DRE Encrypt(PK ,m). Obviously, an adversary is allowed to produce as
many pairs of plaintext-ciphertext as he wants. Since this corresponds to solving
a BDD on a diagonally dominant lattice (from one of its standard canonical
forms), one-wayness is achieved under the conjecture that this problem is indeed
hard to solve. As we will see later, recovering the secret key from its HNF can
be reduced to several instances of BDD as well. Since nothing indicates that
recovering SK from PK can be done in polynomial time, the one-wayness of
DRE is a reasonable conjecture.

IND-CPA from one-wayness. Assume that the scheme achieve OW-CPA secu-
rity. Then, following [25,27] one can be made IND-CPA security in the Random
Oracle Model (ROM) with the following transformations of the encryption and
decryption functions :

(m, s,PK , H) 7→ [m⊕H(s)∥DRE-Encrypt(PK , s)]

and
(c1, c2,SK) 7→ H(DRE-Decrypt(SK , c2))⊕ c1,

where s is a random vector and H a hash function modelized as a random oracle.

IND-CPA to IND-CCA Finally, famous transformations permit to reach IND-
CCA security such as the Fujisaki-Okamoto (F.-O.) transform [28,17].

Remarks on one-wayness. In the end, we see that a last challenge would be to
obtain a formally proven OW-CPA version of DRE. One option could be to
adapt the proof from [27, Theorem 2] by considering a class of random co-cyclic
lattices whose HNF are hard to distinguish from the ones of diagonally dominant
matrices. We believe that this could be achieved through more extensive study
of the determinant, which can be an easy sorting criterion.

We could also choose to hide the determinant, i.e. remove the last coefficient
from the sent vector h before sharing it. In order to construct a setting where
the public key is indistinguishable from random co-cyclic lattices, one could also
randomize the public key by adding multiples of det(B) to its entries, so that it
is close to uniform in a certain range J2l−1, 2lK.

Note that it has been over 20 years that a similar structure, the GGH en-
cryption of Micciancio [40] remains unbroken. We conjecture that the problem
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of distinguishing co-cyclic lattices with diagonally dominant bases (with similar
parameters otherwise) from generic co-cyclic lattices is hard.

4.5 Concrete security

There are several security concerns that one needs to address if planning to
build a cryptosystem. One of them is to ensure that deciphering c into m is not
trivial without the secret key. Heuristically, if c is large enough, the problem
of recovering m from c can be seen as a specific instance of the CVP, which
is known to be hard. With that in mind, what is left is the security of the
public key. Since [40], it makes sense to provide a basis of L(B) as a HNF
for the public key, however other choices might be possible. It might not even
be necessary to provide a basis of L(B) in the first place. Let us assume the
public key is chosen as another basis of the same lattice: in the last decades, it
seemed that pure key recovery attacks on diagonally dominant matrices [49,54]
or close structures [30,43] are rather unsuccessful. The weaknesses were mostly
on signature scheme instances [45,21,23] which do not concern this section. Note
that [45] also consider that the encryption approach of [30] is still secure, and
to the extent of our knowledge this claim has not been challenged yet.

Key recovery

Naive attack. The most naive attack is to reduce the public key in order to
recover the secret key or a basis with an equivalent quality. As a matter of fact,
we will consider only the complexity of computing one short vector. In the case
of DRS, it amounts to solve the SVPγ for a small constant approximation fac-
tor. Note also that diagonally dominant lattices have unusually short vectors.
Indeed, the secret key B is composed of vectors such that D ⩽ ∥Bi∥2 ⩽

√
2D

which is smaller than what is predicted by the Gaussian heuristic by a fac-
tor in O(

√
n). Thus, the situation is similar to what happens for the Hawk

cryptosystem based on the Zn-LIP. Following the analysis done in [24], the re-

quired blocksize to recover a secret vector should satisfy
√
β/n ≈ δ2β−n−1

β with

δβ ≈ (β/(2πe))1/2(β−1) which gives β ∈ O(n/2) + o(n).

Attack by BDD-uSVP. Apart from reducing the public key, one can use the
fact that B is diagonally dominant. Indeed, each vector of the secret basis is
then of the form D · ei + ni with ∥ni∥1 < D. Then solving a BDD instance
with respect to L(B) and the target vector D · ei would yield the secret vector
Bi. The cost of such an attack – without any additional knowledge – can be
estimated following [4,2]. It is mentioned in [23] that recovering Bi can be done
with BKZ-β when√

β/(n+ 1) · ∥Bi −D · ei∥ ≈ δ2β−n−1
β ·Dn/(n+1). (5)

Once fix the smallest block β that BKZ can use to be potentially successful,
one can use the conservator cost estimation used in [27] for BKZ at

16(n+ 1)20.292β . (6)
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Attack on sparse keys. This previous attack can be eventually generalized if the
vector Bi is reasonably sparse. As sparsity offers more compact keys, this is
indeed a property that one can observe in the parameter we propose in Table 1.
If Bi is sparse, for example with only l values different from 0, then one can
guess k number of 0 and then perform the same attack as previously described.
The block βk of the successful BKZ will then respect√

βk/(n− k + 1) · ∥Bi −D · ei∥ ≈ δ2βk−n−k−1
βk

·Dn/(n+1−k). (7)

Obviously, the cost of running BKZ-βk will have to be multiply by the number
of guess required to succeed

Cl
n

Cl
n−k

16(n− k + 1)20.292βk . (8)

Therefore, we will use the k such that the cost of Equation 8 is minimal to
evaluate the security of the secret key.

Message recovery For message recovery, one needs to compute m from c,
where c corresponds to a vector c ≡ m mod L(B). Thus v = c−m is a lattice
vector such that d(c,v) = ∥m∥. In our system, ∥m∥ is clearly superior that
Bi and therefore the message recovery will be always more costly than the key
recovery. Consequently, it will not be useful to evaluate security.

4.6 Parameters and performance for DRE

We can obtain parameters for our DRE scheme together with the corresponding
security levels. The latter are evaluated through the concrete cryptanalysis that
we describe in Section 4.5, which provides us with optimal parameters as well.
However, we choose to follow a linear dependency between them in order to
simplify the presentation and obtain an additional margin of security. In the
end, for a given security level λ, we have the following :

– the noise level ν(B) of the secret key is chosen to be 5λ/4;
– the dimension n equals to 12 · δ(B);
– the diagonal coefficient D is then deduced from δ(B) following the conditions

described in Section 4.2.

As a proof of concept, we also implemented our encryption scheme in order
to verify that our theory is valid and hopefully that it could obtain reasonable
performances without aggressive optimizations. Indeed, since it uses lattices with
no polynomial structure, one could wonder to what extent how slow a basic
implementation of DRE would be. We provide timings (in number of cpucycles)
from our basic implementation, and the associated parameters in table 1

As comparison, these performance numbers are less than 10 times larger than
the ones reported for the optimized implementation of FrodoKem[11], a third
round NIST candidate. The code is available upon request, and will be made
public upon publication.
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Table 1: Parameters for DRE and performance (cpucycles)
Security level λ 32 64 128 192 256 512

Dimension n 480 960 1920 2880 3840 7680
Noise level 40 80 160 240 320 640
Diagonal D 123 243 483 723 963 1923

Encryption (avg cpucycles) - - 570,734 1,213,811 2,502,482 -
Decryption (avg cpucycles) - - 8,971,801 21,357,971 41,899,002 -

5 Heuristic patch of the DRS scheme

In this section we look into the impact of Ducas and Yu statistical attack [23] on
the DRS signature scheme [49,55] when using parameters from our DRE scheme.

5.1 Quick recap of the DRS scheme and attacks

The signature scheme called DRS was a submission to the first round of the
NIST standardization process for quantum resistant signature schemes [46], us-
ing diagonally dominant lattices. The main idea of DRS is to follow a framework
close the one of GGH [31] but using the diagonal dominance property to sign
within an hypercube independent of the secret key, hoping to prevent leaking
the secret key as in [45] for example. This was first presented by Plantard et al.
in [50]. However the original DRS scheme has been subject to a learning attack
from Ducas and Yu [59], which was then extended to the second version of the
scheme, the so-called DRSv2 [56]) [23].

The main idea behind this learning attack is that a signature s obtained
from the signature algorithm is of the form s = s′ ± Bi, where B is the secret
diagonally dominant matrix and s′ is the vector we have just before the algorithm
stops. This relation introduces a correlation between the coefficients of the row
Bi and the ones of s. Then by collecting lots of signatures and using learning
techniques, one can make an educated guess on a key. Typically, for the ith basis
vector, one guess B′

i which is close to the secret Bi.
In the following, we study a new version of the DRSv2 scheme where we use

the same parameters as for our DRE scheme (see Section 4), except for D which
is ν(B) + 1 as in the previous DRS schemes. In particular, we wish to evaluate
the performance of the attack by Ducas and Yu for these new parameters.

5.2 Learning attack with new parameters

In order to evaluate the performance of their attack for a given dimension n and
N samples, Ducas and Yu introduce the following factor :

r(n,N) =
1

n

n∑
i=1

∥Bi −B′
i∥2

∥Bi −D · ei∥2
.
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This factor is deeply related to the complexity of the BDD-uSVP attack with
targetB′

i as it quantifies its distance to the secret vectorBi. More precisely, if the
learning attack gives us a given factor r(n,N), we then know that we can safely
replaceD·ei by a target vector ti such that ∥ti −Bi∥2 ∼ r(n,N)·∥D · ei −Bi∥2.
Thus the smaller r(n,N) is, the easier the subsequent BDD-uSVP procedure is.

In Figure 2 we plotted the factors r(n,N) that we obtained using our new
parameters for the DRS scheme.

Fig. 2: New experimental measures of r(n,N).

One can observe that with the chosen parameters and a fixed N , the factor
r(n,N) seems to be larger when n is increasing. This is different from the original
DRSv2 scheme for which the statistical attack of Ducas and Yu becomes more
and more efficient as n is increasing. Moreover, for all dimensions n the attacks
seems to quickly stabilize with increasing sample size N . Again this is new
when compared to the DRSv2 scheme. Finally, the attack produces almost no
improvement for larger dimensions. All of these observations tend to show that
the statistical attack à la Ducas and Yu [23] should not have an important impact
on the asymptotical security of the DRS scheme with our new parameters.

5.3 Security analysis

As we consider a modified version of the DRSv2 scheme with the parameters as
described above. Since this is the only major modification, we will not describe
algorithms in detail. We focus on analysing its security. We refer to Section 4.5
for key recovery attacks from DRE which will work the same way here. Thus,
we only consider more advanced techniques through statistical analysis.

Original attack. The first statistical attack from Nguyen and Regev [45] and
its improvements [21,37] assume at some point that signatures are of the form
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s = [s1, . . . , sn] ·B where the coordinates si are independent one to each other.
There is no evidence that this condition is satisfied by DRS signatures. However,
their distribution may be close to this ideal setting to the point where one can
still apply the gradient descent with success. Moreover, remark that we know
broad directions for the secret vectors Bi. Thus, as mentioned by Nguyen and
Regev for the GGH scheme in [45], one can start the descent with well-chosen
initial vectors instead of drawing them uniformly on the unitary sphere. However,
our experiments show that this strategy is asymptotically unsuccessful. Indeed,
if s is a vector recovered by a descent, our experiments show that its distance to
the secret key mini∈J1,nK ∥s−Bi∥2 is typically around D. Thus, the best strategy
remains the BDD-uSVP attack on D · ei.

Learning attack from Ducas and Yu. [23] The data gathered by our experiments
tend to show that the learning attack from Ducas and Yu is mitigated. But let us
look more precisely into how the new factors r(n,N) translate in terms of secu-
rity. Recall that for a given r(n,N), the key recovery can be done by replacing the
target vector D ·ei by a vector ti such that ∥ti −Bi∥2 ⩾ r(n,N) ·∥D · ei −Bi∥2.
Thus the complexity is deeply connected to the distance r(n,N) ·∥D · ei −Bi∥2.
In Table 2, for several security levels λ, we gather the theoretical distance
∥ti −Bi∥2 under which the BDD-uSVP strategy starts to have a complexity
lower than 2λ versus the average distance that we obtained in our experiments.

Table 2: Targeted versus experimental distances for the learning attack.

Security level λ 32 48 64

Minimal distances for a successful attack 2.03 2.25 2.5
Experimental distances obtained 5.26 7.9 9.28

One can see that the distances that we obtained is way larger than the limit
that we should not pass and this gap is increasing with the security level. Thus
we deem that the learning attack should have minimal impact on the security
of the scheme.

Extending the learning attack. However one can wonder whether signing with
very close vector reveals other information, such as (potentially approximate)
Voronoi cells. This lead us to consider the setting of the Closest Vector Problem
with Preprocessing (CVPP).

Assume that a learning attack à la Nguyen and Regev [45,21,37] allows us
to recover vectors from a hidden parallelotop close to the Voronoi cell. First one
may wonder if this structure is complex enough to hide the secret basis. Indeed,
diagonally dominant matrices have a strong structure allowing for an efficient
CVP solver.

Thus we considered the possibility that the recovered vector could help in
solving CVPγ more efficiently, to the point where one could forge a signature in
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polynomial time. As mentioned earlier, this setting is close to the one of CVPP
algorithms. We established in Appendix B that the average approximation factor
reached by Algorithm 1, both for signed or negative noises, is a small constant.
Following [20] the query phase for solving such an instance of the Approximate
Closest Vector Problem with Preprocessing (CVPPγ) is exponential for arbi-
trary lattices. Note that the size of the preprocessed list of lattice vectors should
be (at least) subexponential as well and requires to compute the shortest vec-
tors (up to some approximation factor) of the lattice, among which are the
vectors of the secret basis. Thus, one would certainly recover the secret basis as
a byproduct of the query phase. Thus, we deem that forging a signature using
(approximate) Voronoi cells or classical algorithms solving the CVPPγ [20] is
as hard as recovering the secret key.

5.4 Performances and tested parameters

As in Section 4.6 for DRE, we implemented our version of the DRSv2 scheme
using the same functions as in DRE to verify that its performance remain ac-
ceptable. Timings (in number of cpucycles) can be found in Table 3.

Table 3: Parameters for new DRS and performances (cpucycles)
Security level λ 128 256 512

Dimension n 1760 2640 3520
Noise level 160 240 320
Diagonal D 161 241 321

Signature (avg cpucycles) 8,369,109 17,848,387 31,778,217
Verification (avg cpucycles) 839,933 1,663,577 2,862,856

As a reference, this first proof-of-concept implementation of this new signa-
ture scheme is less than 3 times slower than the one submited as a candidate for
the NIST PQC standardization by Squirrels [26], while our verification is less
than 6 times slower. While the code is suboptimal and very basic, we believe it
performs well enough to claim the approach is not to be discarded. The code is
available upon request, and will be made public upon publication.
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A Diagonally Dominant with negative noise

One can obtain better results when considering more specific structures. In this
section we consider diagonally dominant matrices B = D +N where the noise
matrix N is such that ∀(i, j) ∈ J1, nK,Ni,j ⩽ 0.

Lemma 3. The bound on λ∞
1 (L) is tight, i.e. there is B such that λ∞

1 (L(B)) =
∆(B).

Proof. ConsiderB = D·Idn+N such thatNi,i+1 = 1−D andNi,j = 0 whenever

j ̸= i+ 1. Then the vector v
def
= [1, · · · , 1] ·B satisfies the desired equality. ⊓⊔

Lemma 4. Consider B a diagonally dominant matrix with negative noise. Then
there is an algorithm – that we will denote by neg-PSW – that reduces any vector
v ∈ Rn

+ to an equivalent vector w ≡ v mod L(B) such that w ∈ [0, D[n.

Proof. Let v be a vector and w
def
= v − q ·Bi for some i ∈ J1, nK. Then remark

that if vi ⩾ qD, we have 0 ⩽ wi < D and wj ⩾ vj for all j ̸= i. Moreover it is
clear that ∥w∥1 = ∥v∥1 − q∆(B). Thus it is clear that the algorithm will stop
and that the outputted vector will lie in the claimed space. ⊓⊔

Remark 3. Note that one can easily shift the result to the centered hypercube
J−D/2, D/2Jn so that for any v ∈ Nn there is w ≡ v mod L(B) with w ∈
J−D/2, D/2Jn.

One can note that the reduction radius is smaller (by a factor up to 2) that
for generic diagonally dominant matrices. Moreover, the covering radius does no
depends anymore of ∆(B). An advantage which can be used when diagonally
dominant matrices are used for cryptography.

B Average quality of reduction

Average quality of CVP We evaluated experimentally the quality of the approx-
imation factor obtained by Algorithm 1 as a CVPγ solver for small dimensions.
To this end we used the CVP solver from Fpylll [58], called with the method
CVP.closest vector(L, t), where L is the lattice and t is the target vector. From
our computations, for a fixed dominance level ∆(B), the average approximation
factor reached by Algorithm 1 is smaller than a constant, seemingly decreasing
with respect to the dimension.
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Note that since one is able to recover B from its HNF in exponential time,
this indicates that approximating the CVPP within a small constant factor
should be solvable in polynomial time for diagonally dominant matrices. This
contrasts with the situation over general lattices [3].

∆(B) n 10 15 20 25 30 35 40 45 50 55 60

PSW
1 2.91 2.86 2.79 2.73 2.67 2.61 2.61 2.56 2.56 2.51 2.50
D/2 1.55 1.50 1.50 1.37 1.38 1.41 1.43 1.36 1.38 1.36 1.38

neg-PSW
1 1.44 1.24 1.26 1.21 1.22 1.16 1.18 1.15 1.15 1.13 1.14
D/2 1.066 1.022 1.028 1.015 1.021 1.012 1.018 1.010 1.011 1.010 1.009

Table 4: Average approximation factor reached by PSW and neg-PSW for small
dimensions and ∆(B) ∈ {1, D/2}.

C Short vectors and reduction algorithms for Column
Diagonally Dominant matrices

In this section we consider Column Diagonally Dominant matrices. A c.d.d ma-
trices can be simply defined as the transpose matrix of a Diagonally Dominant
matrix (Definition 9). Conceqeuntly, we will note ∆T (B) = ∆(BT ).

The overall methodology used in this subsection is very similar to the previous
one. Again, the results proven in this subsection can be grouped in the following
theorem.

Theorem 3. Consider B ∈ Zn a c.d.d. matrix and L = L(B). Then λ1(L) ⩾
∆T (B) and there is an algorithm, RSR (Alg. 3), running within a polynomial
amount of arithmetic operations such that

∀v ∈ span(L), RSR(v) ≡ v mod L, ∥RSR(v)∥∞ ⩽ D − ∆T (B)

2
.

Consequently one has µ(∞)(L) ⩽ D − ∆T (B)
2 .

As done previously, the proof of this theorem will be done in two steps:
bounding the minimal size of the shortest vector, then bounding the maximal
convergence radius of a reduction algorithm. Note that the acronym RSR stands
for RepeatedSingleReduce.

C.1 Specific notations

We will use the following objects and notations.

– For I ⊂ J1, nK, we denote by BI ∈ M|I|,|I|(Z) the submatrix of B composed
of the rows and columns of indexes in I. Naturally, if B is a r.d.d/c.d.d
matrix, so is BI .
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– S∞(l) is the set of positions i given l ∈ Zn such that |li| = ∥l∥∞
– B(I,B) = min

{
max
j∈I

{|(l ·B)j | | ∥l∥∞ = 1, S∞(l) = I}
}

given any set of in-

dexes I.
It is simply min{∥l ·BI∥∞ | l ∈ {−1, 1}|I|}.
We denote B(I,B) by BI when B is implied, and stress that BI ̸= λ1(B).

C.2 Short vectors

First let us study the norm of a shortest vector.

Lemma 5 (Minimal largest value of non-zero combinations). Consider
k ∈ Zn\{0}, j ∈ J1, nK such that |kj | = ∥k∥∞, B be a c.d.d matrix, and v = k ·B.
Then one has |vj | ⩾ ∥k∥∞ · δj(BT ).

Proof. Without any loss of generality we can assume vi ≥ 0 and kj > 0. Then

|vi| =

∣∣∣∣∣
n∑

i=1

kiBi,j

∣∣∣∣∣ ⩾ kjD −
n∑

i=1
i̸=j

|kiBi,j | ⩾ kj(D −
n∑

i=1
i̸=j

|Bi,j |) = kjδj(B
T ).

⊓⊔

This directly implies that λ
(∞)
1 (L(B)) ⩾ ∆T (B). Let us show some additional

results on c.d.d. matrices.

Lemma 6 (Submatrix bound on non-zero combinations). Consider B
a c.d.d. matrix, k ∈ Zn, I = S∞(k) and v = k ·B. Then there is j ∈ I such that
|vj | ⩾ B(I,B).

Proof. If k ∈ {−∥k∥∞, 0, ∥k∥∞}n, then there is j ∈ S∞(k) such that |vj | ⩾
∥k∥∞×B(S∞(k),B). If ∃j1, |kj1 | /∈ {0, ∥k∥∞} with kj1 ̸= 0, one can pick j1 such
that |kj1 | ⩾ |kj | for all j /∈ S∞(k). Consider the vectors k′ and k′′ such that
k = k′ + k′′ and

k′j =

{
sign(kj) · (|k|∞ − |kj1 |), if j ∈ I

0, otherwise.

Therefore we also have

k′′j =

{
sign(kj) · |ks|, if j ∈ I

kj , otherwise.

Remark that for all j ∈ S∞(k) we have sign(k′′j ) = sign(k′j) = sign(ki) and
|k′′j | = |k′′|∞. From what precedes we know that there is j ∈ S∞(k) such that
|(k′ ·B)j | ⩾ B(S∞(k),B). Moreover S∞(k) ⊂ S∞(k′′) and the signs are the same
so sign((k′′ ·B)j) = sign((k′ ·B)j). Thus we obtain |(k ·B)j | ⩾ B(S∞(k),B). ⊓⊔

This gives us the following theorem.

Theorem 4 (Bound by the minimal submatrix). Let B be a c.d.d. matrix.

Then λ
(∞)
1 (L(B)) ⩾ min

I⊆J1,nK
BI .
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C.3 Reduction algorithms for c.d.d. matrices

The previous reduction algorithm only concerned r.d.d matrices and are not
guaranteed to terminate on c.d.d matrices. We will propose here a different
algorithm relying on the c.d.d structure. Before we present the full algorithm,
we first introduce the core part that we denote by SingleReduce. It is described
in Algorithm 2.

Algorithm 2 SingleReduce

Require: v ∈ Zn, B a c.d.d matrix, Ri ⩾ D − δi(B
T )

2
.

Ensure: w ≡ v mod L(B) and ∥w∥∞ ⩽ max(qRi, ∥v∥∞ − q∆T (B)), where q =
max{t ∈ N∗ | ∀i ∈ J1, nK, ∥v∥∞ − tRi ⩾ t(δi(B

T ))}
1: w ← v, i← 1, s← [0, ...., 0] ∈ {0, 1}n {initialization vector, index, reduction

status}
2: q ← max{t ∈ N∗ | ∀i ∈ J1, iK, ∥v∥∞ − tRi ⩾ t(δi(B

T ))}
3: while

∨n
j=1((|wj | > qRj) ∧ (sj = 0)) do

4: if |wi| > qRi and si = 0 then
5: w ← w − q wi

|wi|
Bi {Reduce |wi|}

6: si ← 1 {“Update” the reduction status of index i}
7: end if
8: i← (i mod n) + 1 {Enforces i to be within [1, n] and not [0, n− 1]}
9: end while
10: return w

Lemma 7. SingleReduce (Alg. 2) outputs w ∈ Zn verifying the following prop-
erties:

1. w ≡ v mod L(B).
2. ∀i ∈ J1, nK, |vi| > qRi =⇒ |wi| < |vi|.
3. ∀i ∈ J1, nK, |vi| ⩽ qRi =⇒ |wi| ⩽ qRi.

Moreover the algorithm performs at most n additions on vectors.

Proof. First remark that we add or remove at most one time each row vector to
the variable w. This is ensured by the flag vector s. Therefore we add at most n
vectors to w. Write v = w(0),w(1), . . . ,w(r) = w the two-by-two distinct values
of the variable w with r ⩽ n. Similarly write s(0), . . . , s(r) the different values

taken by s. Fix some index i ∈ J1, nK. First assume s
(r)
i = 0. Then we know

that |w(r)
i | ⩽ qRi and wi satisfies the claimed properties. Now assume s

(r)
i = 1.

Let us denote by k0 the integer such that w
(k0)
i = w

(k0−1)
i ± qD. Without loss

of generality we can assume w
(0)
i = vi ⩾ 0. First we consider the case where

w
(0)
i > qRi. Then for some J ⊂ J1, nK \ {i} we have

w
(k0−1)
i = w

(0)
i +

∑
j∈J

±qbj,i ⩾ w
(0)
i −q(D−δi(B

T )) > qRi−q(D−δi(B
T )) ⩾ q

δi(B
T )

2
> 0
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therefore w
(k0)
i = w

(k0−1)
i − qD. We can write

w
(n)
i = w

(0)
i −qD+

∑
j∈J1,nK

j ̸=i

±qbj,i > qRi−qD−q(D−δi(B
T ) ⩾ −q(D− δi(B

T )

2
)

which ensures |w(n)
i | < |w(0)

i |. Now consider the case where w
(0)
i ⩽ qRi. From

D− δi(B
T )

2 > D−δi(B
T ) we deduce that w

(k0−1)
i > 0 and w

(k0)
i = w

(k0−1)
i −qD.

With the same reasoning as before we can conclude w
(n)
i < w

(0)
i and w

(n)
i >

w
(k0)
i − qD− q(D− δi(B)) > −q(D− δi(B)

2 ) which ensures |w(n)
i | ⩽ qRi. Finally

we remark that the results obtained are independent of the choice of i. ⊓⊔

This building block naturally gives us the RSR reduction algorithm, which
is guaranteed to finish given a c.d.d. lattice basis. Theoretically, there is no
algorithm that can provide strictly better bounds on l∞ for every single column
diagonally dominant lattice: the covering radius cannot be lower than half the
size of the shortest vector, and for ∆T (B) = D we do reach this extremity.

Algorithm 3 RSR

Require: v ∈ Zn, B a c.d.d matrix, Ri ⩾ D − δi(B)
2

.
Ensure: w ≡ v mod L(B) and |wi| ≤ Ri.
1: w← v
2: while

∨n
j=1(|wj | > Rj) do

3: w ←SingleReduce(w,B,R).
4: end while
5: return w

Proposition 1. Given a vector v ∈ Zn, R ∈ Zn such that Ri ⩾ D − δi(B)
2

where D, δi(B) are associated to a c.d.d. matrix B, RSR (Alg. 3) outputs w ∈ Zn

verifying the following properties:

1. w ≡ v mod L(B).
2. ∀i ∈ J1, nK, |wi| ⩽ Ri

Moreover the algorithm performs at most n
⌈
logb

2∥v∥∞
2D+∆TB

⌉
+ n additions on

vectors, where b = 2D+∆TB
2D−∆TB

.

Proof. Consider ∥v∥∞ such that there is no integer t > 0 such that ∥v∥∞−tRi ⩾
tδi(B), i.e. ∥v∥∞−Ri < δi(B). Then a call to SingleReduce with q = 1 outputs
w such that ∥wi∥ ⩽ Ri. Now consider ∥v∥∞ sufficiently large so that q exists.
One call to SingleReduce outputs w such that ∥w∥∞ ⩽ max{qRi, ∥v∥∞ −
q∆T (B))} ⩽ ∥v∥∞ − q∆T (B)) by definition of q. Thus we get ∥w∥∞ ⩽ ∥v∥∞ ·
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(1 − Q), where Q = q∆T (B)
∥v∥∞

. Clearly Q > 0, and let us prove that Q < 1. By

definition we have

∥v∥∞ − qRi ⩾ qδi(B
T )) =⇒ q

∥v∥∞
⩽

2D +∆T (B)

2

which gives

Q ⩽
2∆T (B)

2D +∆T (B)
.

Since ∆T (B) > 0 one has 2D +∆T (B) > 2D, which leads to Q < 2D/2D = 1.

Then, writing a := 1 − 2∆T (B)
2D+∆T (B)

= 2D−∆T (B)
2D+∆T (B)

one has 0 < 1 − Q < a < 1

and ∥w∥∞ ⩽ a · ∥v∥∞. Consequently, after i calls to SingleReduce, one has
∥w∥∞ ⩽ ai · ∥v∥∞. Let us find i the number of calls to SingleReduce after
which a single call to SingleReduce with q = 1 will output a well-reduced
vector. This is ensured by

∥w∥∞ ⩽ ai · ∥v∥∞ < R+∆T (B) ⇐⇒ ai ⩽
2D +∆T (B)

2∥v∥∞

⇐⇒ i ⩾ loga
2D +∆T (B)

2∥v∥∞

⇐⇒ i =

⌈
loga

2D +∆T (B)

2∥v∥∞

⌉
⇐⇒ i =

⌈
log1/a

2∥v∥∞
2D +∆T (B)

⌉
.

Since each call to SingleReduce has at most n vector additions, we get the
claimed worst-case cost. ⊓⊔

We want to stress this does not show the algorithm is practically efficient:
SingleReduce might run a quadratic amount of absolute value comparisons on
scalars in a single call. However, the reduction still runs a polynomial amount
of vector operations in the dimension and in the entry size.

Comparison with Babai’s Nearest Plane Unlike the r.d.d case, we do not have a
measure of ∥bi∥1. However, we estimate that it is possible in the case of c.d.d to
have rows with very large noise, which might give ∥bi∥1 > 2D and thus a larger
worst-case bound than a r.d.d for Babäı’s nearest plane algorithm.
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