Practical Exercises 2 - Primality testing and
factorisation

September 22, 2022

The goal of these exercises is to familiarize withclassical arithmetical problems such as primality
testing or factorisation, and their impact on public key cryptograhy. For implementations, it is advised
you do a first draft using SAGEMATH before translating it into C with GMP.

Exercise 1: Primality testing

One of the main algorithms used to verify whether a given integer n is a prime number is Miller-
Rabin algorithrrﬂ It consists in successively drawing integers from [2,n — 1] and checking if they are
witnesses for the compositness of n. If no witness is found, then n is deemed to be prime.

1. Verify experimentally the prime number theorem : compute the average number of primality trials
required to generate a key for RSA-1024 and compare this value to the theoretical one.

2. Implement the Miller-Rabin primality test.

3. Under the Generalised Riemann Hypothesis (GRH), the smallest witness for a composite n is
known to be less than 21nn?. Deduce from this a deterministic primality test, called Miller test.

4. Compare the performances of your implementations to the ones of functions given by SAGEMATH
or GMP.

Exercise 2: Pollard’s p — 1

Pollard’s p — 1 algorithmﬂ is a factorisation algorithm based on the following idea. If p | n then there
is a € [2,n — 1] such that a? = 1 mod p.

1. Implement Pollard’s p — 1 algorithm and use it to factorise

n = 117827681420271584017432903522327303325344948050665323956545863.

2. The success of the algorithm depends heavily on the shape of the factors of n. After explaining
which are such weak factors, write a function generating numbers n for which Pollard’s method
would not retrieve a factor in reasonable time.

Exercise 3: Fermat’s method

Fermat’s methodE] tries to factorise an integer n by writing it as the diffence between two squares.

1. Implement Fermat method and use it to factorise

n = 4433634977317959977189716351978918572296527677331175210881861.

2. Can you generate composite integers for which Fermat method fails to compute a factor in rea-
sonable time 7
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