
Practical Exercises 1 - RSA

September 7, 2022

The goal of these exercises is to familiarize with RSA’s internals and to recognize its main weak-
nesses. For the implementation (Exercise 1), you will use GMP1, a C/C++ multi-precision library.
To implement the attacks (Exercices 2 and 3), it is strongly advised to use sage2, a python-based
mathematical toolbox.

You can contact me anytime by mail at andrea.lesavourey@irisa.fr.

Some appetizer: Textbook RSA in SageMath

1. Write an encryption procedure.

2. Write an decryption procedure.

3. Given an integer l, write a key generation procedure.

4. Generate some RSA keys of 30 bits and mesure the time taken to encrypt a random message. If
it takes too much time, search why.

5. Do the same with keys of 2014 or 2048 bits.

Écrire une procédure SageMath de chiffrement.

Exercise 1: Textbook RSA

Remainder An RSA public key consists in a modulus n and an exponent e, where n = p × q is the
product of two large prime numbers. Here, we will consider e = 216 + 1 which is the most commonly
used value for both security (see Exercise 2) and performance3.
The corresponding private key is the same modulus, with a exponent d such that d is the inverse of e
modulo (p − 1)(q − 1), meaning we have ed ≡ 1 mod (p − 1)(q − 1).

In this exercise, you need to use GMP as a multi-precision library (libgmp-dev on
debian-based, gmp-devel on fedora).

1. Implement a function for RSA key generation, taking the bit size of the modulus as an input.

(a) Implement a function taking an integer ` and randomly generating a prime number of `
bits. Use the function mpz_cryptrand (file mpz_rand.c reproduced at the end). Be careful,
mpz_cryptrand takes a byte size. You can use mpz_nextprime to find a prime number bigger
than the input.

(b) Using the previous function, implement a function generating two primes p and q and com-
puting the modulus n.

1https://gmplib.org/
2https://www.sagemath.org
3216 + 1 = (1000000000000001)2 which is ideal for most modular exponentiation algorithms.

1



(c) Using e = 216 + 1, compute d. To do so, implement the extended Euclid algorithm4, and use
it on e and (p − 1)(q − 1).

(d) Write the key generation function, returning a public key, and a private key (you can store
them in two data structures for instance).

2. Implement an encryption function, taking a string (the message) and a public key, returning the
encrypted message. The message length should be strictly less than the byte size of the modulus
(we omit padding here, which should never be done in real world application!).

(a) Implement a modular exponentiation function, taking the integers m, e, n and returning
me mod n. This can be done using the appropriate GMP function.

(b) Implement an encoding function which converts a character string into integer (here we are
talking about a mpz_t). This conversion can, for instance, represent each character with its
ASCII hexadecimal value. For instance, encode("word") = 0x776F7264 = 66428301924.
Hint: take a look at mpz_import, as used in mpz_cryptrand.

(c) Implement a decoding function reversing the previous operation.
Hint: take a look at mpz_export.

(d) Implement the overall encryption function.

3. Implement a decryption function taking an encrypted message (as an integer) and a private key,
returning the corresponding message. You can test your encryption scheme by sharing your public
key with your classmates, and exchanging various messages.

Exercise 2: Classical attacks

We strongly advise to use sage, or at least Python to avoid wasting time on imple-
mentation details. For each question, explain the attack concept and how it works.

Use the file tp1-rsa_material.sage, containing all necessary data. Function int_to_ascii allows
you to convert an integer into ASCII characters (useful to recover the message after decryption).

1. A short message has been encrypted using the public key (n1, e1). We have been informed that
no padding has been used. Recover the message.

2. You know that c1 has been encrypted using the public key (n2_1, e2). You also know that the
corresponding entity generated the key (n2_2, e2), and is not very careful with the key generation
process... Recover the message.

(a) Think about which elements are given. Which information could you be able to recover ?

(b) From the recovered element(s), recover the full private key (sage has an inverse_mod method
which can turn out helpful).

3. The same messages have been sent to multiple people. The public key of each receiver has been
used to encrypt the message before sending it. Recover the message.

(a) Note the similarity between the keys.

(b) The function crt in sage allows to use the Chinese Remainder Theorem (Théorème des Restes
Chinois in French). The function CRT_list do the same with more than two elements.

4https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm

Page 2



Exercise 3: Wiener’s attack

Let
n = 2630048851947048265274043876774585976831617720728227254753421

and
e = 60177566799353897687038964037333604046539474788802464201235

be the parameters of a RSA public key. We will consider here Wiener’s attack5.

1. Write a function allowing you to compute the convergents of a real number.

2. Deduce from this an attack function on a RSA secret key if it is too small.

3. Retrieve the factorisation of n.

5https://en.wikipedia.org/wiki/Wiener’s_attack

Page 3



Code of mpz_rand.c

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <gmp.h>

/* use /dev/urandom to generate random number of the given size */
void mpz_cryptrand(mpz_t rop, size_t size) {
unsigned char* buf = NULL;
FILE* f = NULL;

buf = malloc(size*sizeof(unsigned char));
if(!buf)
goto err;

f = fopen("/dev/urandom", "r");
if (!f)
goto err;

fread(buf, size, 1, f);
mpz_import(rop, size, 1, 1, 0, 0, buf);

err:
if (buf) free(buf);
if (f) fclose(f);

}

/* compile with: */
/* $ gcc -o gmp_rand mpz_rand.c -lgmp */

Page 4


